Cargando…

Auto Sizing of CANDU Nuclear Reactor Fuel Channel Flaws from UT Scans

The inspection of nuclear power plants is an essential process that occurs during plant outages. During this process, various systems are inspected, including the reactor’s fuel channels to ensure that they are safe and reliable for the plant’s operation. The inspection of Canada Deuterium Uranium (...

Descripción completa

Detalles Bibliográficos
Autores principales: Hammad, Issam, Poloni, Matthew, Isherwood, Andrew, Simpson, Ryan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146412/
https://www.ncbi.nlm.nih.gov/pubmed/37112248
http://dx.doi.org/10.3390/s23083907
Descripción
Sumario:The inspection of nuclear power plants is an essential process that occurs during plant outages. During this process, various systems are inspected, including the reactor’s fuel channels to ensure that they are safe and reliable for the plant’s operation. The inspection of Canada Deuterium Uranium (CANDU(®)) reactor pressure tubes, which are the core component of the fuel channels and house the reactor fuel bundles, is performed using Ultrasonic Testing (UT). Based on the current process that is followed by Canadian nuclear operators, the UT scans are manually examined by analysts to locate, measure, and characterize pressure tube flaws. This paper proposes solutions for the auto-detection and sizing of pressure tube flaws using two deterministic algorithms, the first uses segmented linear regression, while the second uses the average time of flight (ToF) within ±σ of µ. When compared against a manual analysis stream, the linear regression algorithm and the average ToF achieved an average depth difference of 0.0180 mm and 0.0206 mm, respectively. These results are very close to the depth difference of 0.0156 mm when comparing two manual streams. Therefore, the proposed algorithms can be adopted in production, which can lead to significant cost savings in terms of time and labor.