Cargando…
SiamHAS: Siamese Tracker with Hierarchical Attention Strategy for Aerial Tracking
For the Siamese network-based trackers utilizing modern deep feature extraction networks without taking full advantage of the different levels of features, tracking drift is prone to occur in aerial scenarios, such as target occlusion, scale variation, and low-resolution target tracking. Additionall...
Autores principales: | Liu, Faxue, Liu, Jinghong, Chen, Qiqi, Wang, Xuan, Liu, Chenglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146647/ https://www.ncbi.nlm.nih.gov/pubmed/37421126 http://dx.doi.org/10.3390/mi14040893 |
Ejemplares similares
-
SiamHSFT: A Siamese Network-Based Tracker with Hierarchical Sparse Fusion and Transformer for UAV Tracking
por: Hu, Xiuhua, et al.
Publicado: (2023) -
SiamOT: An Improved Siamese Network with Online Training for Visual Tracking
por: Gong, Xiaomei, et al.
Publicado: (2022) -
SiamMFC: Visual Object Tracking Based on Mainfold Full Convolution Siamese Network
por: Chen, Jia, et al.
Publicado: (2021) -
Siamese hierarchical feature fusion transformer for efficient tracking
por: Dai, Jiahai, et al.
Publicado: (2022) -
CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction
por: Yang, Zihao, et al.
Publicado: (2023)