Cargando…
Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense
Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of (1)H-NMR, (13)C-NMR, and mass spectral...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146670/ https://www.ncbi.nlm.nih.gov/pubmed/37110806 http://dx.doi.org/10.3390/molecules28083572 |
Sumario: | Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of (1)H-NMR, (13)C-NMR, and mass spectral data, the isolated compounds were identified as 4-allylbenzene-1,2-diol and (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol. 4-Allylbenzene-1,2-diol was shown to have strong antibacterial activity against four plant pathogens, including Xanthomonas oryzae pathovar oryzae (Xoo), X. axonopodis pv. citri (Xac), X. oryzae pv. oryzicola (Xoc) and X. campestris pv. mangiferaeindicae (Xcm). Further bioassay results exhibited that 4-allylbenzene-1,2-diol had a broad antibacterial spectrum, including Xoo, Xac, Xoc, Xcm, X. fragariae (Xf), X. campestris pv. campestris (Xcc), Pectobacterium carotovorum subspecies brasiliense (Pcb) and P. carotovorum subsp. carotovorum (Pcc), with minimum inhibitory concentration (MIC) values ranging from 333.75 to 1335 μmol/L. The pot experiment showed that 4-allylbenzene-1,2-diol exerted an excellent protective effect against Xoo, with a controlled efficacy reaching 72.73% at 4 MIC, which was superior to the positive control kasugamycin (53.03%) at 4 MIC. Further results demonstrated that the 4-allylbenzene-1,2-diol damaged the integrity of the cell membrane and increased cell membrane permeability. In addition, 4-allylbenzene-1,2-diol also prevented the pathogenicity-related biofilm formation in Xoo, thus limiting the movement of Xoo and reducing the production of extracellular polysaccharides (EPS) in Xoo. These findings suggest the value of 4-allylbenzene-1,2-diol and P. austrosinense could be as promising resources for developing novel antibacterial agents. |
---|