Cargando…
Enhancing Spam Message Classification and Detection Using Transformer-Based Embedding and Ensemble Learning
Over the last decade, the Short Message Service (SMS) has become a primary communication channel. Nevertheless, its popularity has also given rise to the so-called SMS spam. These messages, i.e., spam, are annoying and potentially malicious by exposing SMS users to credential theft and data loss. To...
Autores principales: | Ghourabi, Abdallah, Alohaly, Manar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146782/ https://www.ncbi.nlm.nih.gov/pubmed/37112202 http://dx.doi.org/10.3390/s23083861 |
Ejemplares similares
-
A systematic literature review on spam content detection and classification
por: Kaddoura, Sanaa, et al.
Publicado: (2022) -
Deep convolutional forest: a dynamic deep ensemble approach for spam detection in text
por: Shaaban, Mai A., et al.
Publicado: (2022) -
Spam Kings
por: McWilliams, Brian
Publicado: (2014) -
Stopping spam
por: Schwartz, Alan, et al.
Publicado: (1998) -
SpamAssassin
por: Schwartz, Alan
Publicado: (2004)