Cargando…

Nonlinear Deblurring for Low-Light Saturated Image

Single image deblurring has achieved significant progress for natural daytime images. Saturation is a common phenomenon in blurry images, due to the low light conditions and long exposure times. However, conventional linear deblurring methods usually deal with natural blurry images well but result i...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Shuning, Chang, Yi, Xu, Shengqi, Fang, Houzhang, Yan, Luxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146853/
https://www.ncbi.nlm.nih.gov/pubmed/37112126
http://dx.doi.org/10.3390/s23083784
_version_ 1785034678126772224
author Cao, Shuning
Chang, Yi
Xu, Shengqi
Fang, Houzhang
Yan, Luxin
author_facet Cao, Shuning
Chang, Yi
Xu, Shengqi
Fang, Houzhang
Yan, Luxin
author_sort Cao, Shuning
collection PubMed
description Single image deblurring has achieved significant progress for natural daytime images. Saturation is a common phenomenon in blurry images, due to the low light conditions and long exposure times. However, conventional linear deblurring methods usually deal with natural blurry images well but result in severe ringing artifacts when recovering low-light saturated blurry images. To solve this problem, we formulate the saturation deblurring problem as a nonlinear model, in which all the saturated and unsaturated pixels are modeled adaptively. Specifically, we additionally introduce a nonlinear function to the convolution operator to accommodate the procedure of the saturation in the presence of the blurring. The proposed method has two advantages over previous methods. On the one hand, the proposed method achieves the same high quality of restoring the natural image as seen in conventional deblurring methods, while also reducing the estimation errors in saturated areas and suppressing ringing artifacts. On the other hand, compared with the recent saturated-based deblurring methods, the proposed method captures the formation of unsaturated and saturated degradations straightforwardly rather than with cumbersome and error-prone detection steps. Note that, this nonlinear degradation model can be naturally formulated into a maximum-a posterioriframework, and can be efficiently decoupled into several solvable sub-problems via the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real-world images demonstrate that the proposed deblurring algorithm outperforms the state-of-the-art low-light saturation-based deblurring methods.
format Online
Article
Text
id pubmed-10146853
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-101468532023-04-29 Nonlinear Deblurring for Low-Light Saturated Image Cao, Shuning Chang, Yi Xu, Shengqi Fang, Houzhang Yan, Luxin Sensors (Basel) Article Single image deblurring has achieved significant progress for natural daytime images. Saturation is a common phenomenon in blurry images, due to the low light conditions and long exposure times. However, conventional linear deblurring methods usually deal with natural blurry images well but result in severe ringing artifacts when recovering low-light saturated blurry images. To solve this problem, we formulate the saturation deblurring problem as a nonlinear model, in which all the saturated and unsaturated pixels are modeled adaptively. Specifically, we additionally introduce a nonlinear function to the convolution operator to accommodate the procedure of the saturation in the presence of the blurring. The proposed method has two advantages over previous methods. On the one hand, the proposed method achieves the same high quality of restoring the natural image as seen in conventional deblurring methods, while also reducing the estimation errors in saturated areas and suppressing ringing artifacts. On the other hand, compared with the recent saturated-based deblurring methods, the proposed method captures the formation of unsaturated and saturated degradations straightforwardly rather than with cumbersome and error-prone detection steps. Note that, this nonlinear degradation model can be naturally formulated into a maximum-a posterioriframework, and can be efficiently decoupled into several solvable sub-problems via the alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real-world images demonstrate that the proposed deblurring algorithm outperforms the state-of-the-art low-light saturation-based deblurring methods. MDPI 2023-04-07 /pmc/articles/PMC10146853/ /pubmed/37112126 http://dx.doi.org/10.3390/s23083784 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Cao, Shuning
Chang, Yi
Xu, Shengqi
Fang, Houzhang
Yan, Luxin
Nonlinear Deblurring for Low-Light Saturated Image
title Nonlinear Deblurring for Low-Light Saturated Image
title_full Nonlinear Deblurring for Low-Light Saturated Image
title_fullStr Nonlinear Deblurring for Low-Light Saturated Image
title_full_unstemmed Nonlinear Deblurring for Low-Light Saturated Image
title_short Nonlinear Deblurring for Low-Light Saturated Image
title_sort nonlinear deblurring for low-light saturated image
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146853/
https://www.ncbi.nlm.nih.gov/pubmed/37112126
http://dx.doi.org/10.3390/s23083784
work_keys_str_mv AT caoshuning nonlineardeblurringforlowlightsaturatedimage
AT changyi nonlineardeblurringforlowlightsaturatedimage
AT xushengqi nonlineardeblurringforlowlightsaturatedimage
AT fanghouzhang nonlineardeblurringforlowlightsaturatedimage
AT yanluxin nonlineardeblurringforlowlightsaturatedimage