Cargando…
PARC: Physics-aware recurrent convolutional neural networks to assimilate meso scale reactive mechanics of energetic materials
The thermo-mechanical response of shock-initiated energetic materials (EMs) is highly influenced by their microstructures, presenting an opportunity to engineer EM microstructures in a “materials-by-design” framework. However, the current design practice is limited, as a large ensemble of simulation...
Autores principales: | Nguyen, Phong C. H., Nguyen, Yen-Thi, Choi, Joseph B., Seshadri, Pradeep K., Udaykumar, H. S., Baek, Stephen S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146890/ https://www.ncbi.nlm.nih.gov/pubmed/37115927 http://dx.doi.org/10.1126/sciadv.add6868 |
Ejemplares similares
-
Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials
por: Chun, Sehyun, et al.
Publicado: (2020) -
CH(3)NH(3)PbI(3) grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition
por: Yao, Zhibo, et al.
Publicado: (2017) -
Radiological Safety for the J-PARC Project
por: H. Nakashima (JAEA)
Publicado: (21/0) -
J-PARC Symposium 2019
por: Saito, Naohito
Publicado: (2021) -
Preparing for physics at J-Parc
Publicado: (2004)