Cargando…
Effect of Working Temperature Conditions on the Autogenous Deformation of High-Performance Concrete Mixed with MgO Expansive Agent
Currently, mass concrete is increasingly utilized in various engineering projects that demand high physical properties of concrete. The water-cement ratio of mass concrete is comparatively smaller than that of the concrete used in dam engineering. However, the occurrence of severe cracking in mass c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147040/ https://www.ncbi.nlm.nih.gov/pubmed/37109839 http://dx.doi.org/10.3390/ma16083006 |
Sumario: | Currently, mass concrete is increasingly utilized in various engineering projects that demand high physical properties of concrete. The water-cement ratio of mass concrete is comparatively smaller than that of the concrete used in dam engineering. However, the occurrence of severe cracking in mass concrete has been reported in numerous engineering applications. To address this issue, the incorporation of MgO expansive agent (MEA) in concrete has been widely recognized as an effective method to prevent mass concrete from cracking. In this research, three distinct temperature conditions were established based on the temperature elevation of mass concrete in practical engineering scenarios. To replicate the temperature increase under operational conditions, a device was fabricated that employed a stainless-steel barrel as the container for concrete, which was enveloped with insulation cotton for thermal insulation purposes. Three different MEA dosages were used during the pouring of concrete, and sine strain gauges were placed within the concrete to gauge the resulting strain. The hydration level of MEA was studied using thermogravimetric analysis (TG) to calculate the degree of hydration. The findings demonstrate that temperature has a significant impact on the performance of MEA; a higher temperature results in more complete hydration of MEA. The design of the three temperature conditions revealed that when the peak temperature exceeded 60 °C in two cases, the addition of 6% MEA was sufficient to fully compensate for the early shrinkage of concrete. Moreover, in instances where the peak temperature exceeded 60 °C, the impact of temperature on accelerating MEA hydration was more noticeable. |
---|