Cargando…
A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images
Super-resolution (SR) images based on deep networks have achieved great accomplishments in recent years, but the large number of parameters that come with them are not conducive to use in equipment with limited capabilities in real life. Therefore, we propose a lightweight feature distillation and e...
Autores principales: | Gao, Feng, Li, Liangliang, Wang, Jiawen, Sun, Kaipeng, Lv, Ming, Jia, Zhenhong, Ma, Hongbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147051/ https://www.ncbi.nlm.nih.gov/pubmed/37112247 http://dx.doi.org/10.3390/s23083906 |
Ejemplares similares
-
Context-aware lightweight remote-sensing image super-resolution network
por: Peng, Guangwen, et al.
Publicado: (2023) -
Remote Sensing Imagery Super Resolution Based on Adaptive Multi-Scale Feature Fusion Network
por: Wang, Xinying, et al.
Publicado: (2020) -
Attention Network with Information Distillation for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Multiscale Geometric Analysis Fusion-Based Unsupervised Change Detection in Remote Sensing Images via FLICM Model
por: Li, Liangliang, et al.
Publicado: (2022) -
SR-FEINR: Continuous Remote Sensing Image Super-Resolution Using Feature-Enhanced Implicit Neural Representation
por: Luo, Jinming, et al.
Publicado: (2023)