Cargando…

An Automotive LiDAR Performance Test Method in Dynamic Driving Conditions

The Light Detection and Ranging (LiDAR) sensor has become essential to achieving a high level of autonomous driving functions, as well as a standard Advanced Driver Assistance System (ADAS). LiDAR capabilities and signal repeatabilities under extreme weather conditions are of utmost concern in terms...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jewoo, Cho, Jihyuk, Lee, Seungjoo, Bak, Seokhwan, Kim, Yonghwi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147061/
https://www.ncbi.nlm.nih.gov/pubmed/37112234
http://dx.doi.org/10.3390/s23083892
Descripción
Sumario:The Light Detection and Ranging (LiDAR) sensor has become essential to achieving a high level of autonomous driving functions, as well as a standard Advanced Driver Assistance System (ADAS). LiDAR capabilities and signal repeatabilities under extreme weather conditions are of utmost concern in terms of the redundancy design of automotive sensor systems. In this paper, we demonstrate a performance test method for automotive LiDAR sensors that can be utilized in dynamic test scenarios. In order to measure the performance of a LiDAR sensor in a dynamic test scenario, we propose a spatio-temporal point segmentation algorithm that can separate a LiDAR signal of moving reference targets (car, square target, etc.), using an unsupervised clustering method. An automotive-graded LiDAR sensor is evaluated in four harsh environmental simulations, based on time-series environmental data of real road fleets in the USA, and four vehicle-level tests with dynamic test cases are conducted. Our test results showed that the performance of LiDAR sensors may be degraded, due to several environmental factors, such as sunlight, reflectivity of an object, cover contamination, and so on.