Cargando…

Functional characterization and molecular fingerprinting of potential phosphate solubilizing bacterial candidates from Shisham rhizosphere

Phosphate solubilizing bacteria (PSB) are important role players in plant growth promotion. In the present study, we aimed to screen the functionally active phosphate solubilizing bacteria (PSB) associated with Dalbergia sissoo Roxb. (Shisham) from different provenances. Screening for phosphate solu...

Descripción completa

Detalles Bibliográficos
Autores principales: Joshi, Samiksha, Gangola, Saurabh, Jaggi, Vandana, Sahgal, Manvika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147649/
https://www.ncbi.nlm.nih.gov/pubmed/37117212
http://dx.doi.org/10.1038/s41598-023-33217-9
Descripción
Sumario:Phosphate solubilizing bacteria (PSB) are important role players in plant growth promotion. In the present study, we aimed to screen the functionally active phosphate solubilizing bacteria (PSB) associated with Dalbergia sissoo Roxb. (Shisham) from different provenances. Screening for phosphate solubilization was done on Pikovskaya's agar, and 18 bacteria positive for the tri-calcium phosphate (Ca(3)(PO(4))(2) solubilization showing visible dissolution halo zones were identified. All 18 isolates showed zinc solubilization, indole acetic acid (IAA), siderophore, and hydrogen cyanide (HCN) production. The morphological and biochemical characterization with 16S rDNA gene-based phylogenetic analysis identified bacterial strains as belonging to the genus Pseudomonas, Klebsiella, Streptomyces, Pantoea, Kitasatospora, Micrococcus, and Staphylococcus. Among all the isolates, one of the isolates named L4, from Lacchiwala region was the most efficient P solubilizer with a high P solubilization index (4.75 ± 0.06) and quantitative P solubilization activity (891.38 ± 18.55 μg mL(−1)). The validation of phosphate solubilization activity of PSB isolates was done by amplification of the Pyrroloquinoline quinone (PQQ) genes, pqqA and pqqC. Based on this study, we have selected the bacterial strains which are efficient phosphate solubilizers and could be economical and eco-friendly in plant growth promotion, disease suppression, as an antioxidant, and for subsequent enhancement of yield.