Cargando…
Clamping force prediction based on deep spatio-temporal network for machining process of deformable parts
As an important component of the machining system, the influence of fixtures on the machining deformation of the workpiece cannot be ignored. By controlling the clamping force during the machining process is an effective means to suppress or improve the machining deformation. However, due to the dyn...
Autores principales: | Li, Enming, Zhou, Jingtao, Yang, Changsen, Wang, Mingwei, Zhang, Shusheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147658/ https://www.ncbi.nlm.nih.gov/pubmed/37117242 http://dx.doi.org/10.1038/s41598-023-33666-2 |
Ejemplares similares
-
Local-feature and global-dependency based tool wear prediction using deep learning
por: Yang, Changsen, et al.
Publicado: (2022) -
Spatio-temporal deep learning models for tip force estimation during needle insertion
por: Gessert, Nils, et al.
Publicado: (2019) -
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
por: Tapson, Jonathan C., et al.
Publicado: (2013) -
Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing
por: Ciullo, Valentina, et al.
Publicado: (2018) -
Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks
por: Kugele, Alexander, et al.
Publicado: (2020)