Cargando…
Single-step retrosynthesis prediction by leveraging commonly preserved substructures
Retrosynthesis analysis is an important task in organic chemistry with numerous industrial applications. Previously, machine learning approaches employing natural language processing techniques achieved promising results in this task by first representing reactant molecules as strings and subsequent...
Autores principales: | Fang, Lei, Li, Junren, Zhao, Ming, Tan, Li, Lou, Jian-Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147675/ https://www.ncbi.nlm.nih.gov/pubmed/37117216 http://dx.doi.org/10.1038/s41467-023-37969-w |
Ejemplares similares
-
RetroRanker: leveraging reaction changes to improve retrosynthesis prediction through re-ranking
por: Li, Junren, et al.
Publicado: (2023) -
Enhancing diversity in language based models for single-step retrosynthesis
por: Toniato, Alessandra, et al.
Publicado: (2023) -
State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis
por: Tetko, Igor V., et al.
Publicado: (2020) -
G(2)Retro as a two-step graph generative models for retrosynthesis prediction
por: Chen, Ziqi, et al.
Publicado: (2023) -
Improving the performance of models for one-step retrosynthesis through re-ranking
por: Lin, Min Htoo, et al.
Publicado: (2022)