Cargando…
Iterative heterogeneous graph learning for knowledge graph-based recommendation
Incorporating knowledge graphs into recommendation systems has attracted wide attention in various fields recently. A Knowledge graph contains abundant information with multi-type relations among multi-type nodes. The heterogeneous structure reveals not only the connectivity but also the complementa...
Autores principales: | Liu, Tieyuan, Shen, Hongjie, Chang, Liang, Li, Long, Li, Jingjing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147700/ https://www.ncbi.nlm.nih.gov/pubmed/37117327 http://dx.doi.org/10.1038/s41598-023-33984-5 |
Ejemplares similares
-
Knowledge-Fusion-Based Iterative Graph Structure Learning Framework for Implicit Sentiment Identification
por: Zhao, Yuxia, et al.
Publicado: (2023) -
Interpretable patent recommendation with knowledge graph and deep learning
por: Chen, Han, et al.
Publicado: (2023) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Embedding-Based Recommendations on Scholarly Knowledge Graphs
por: Nayyeri, Mojtaba, et al.
Publicado: (2020) -
Iterative Min Cut Clustering Based on Graph Cuts
por: Liu, Bowen, et al.
Publicado: (2021)