Cargando…
PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147702/ https://www.ncbi.nlm.nih.gov/pubmed/37117207 http://dx.doi.org/10.1038/s41467-023-37031-9 |
_version_ | 1785034847172952064 |
---|---|
author | Bilbao, Aivett Munoz, Nathalie Kim, Joonhoon Orton, Daniel J. Gao, Yuqian Poorey, Kunal Pomraning, Kyle R. Weitz, Karl Burnet, Meagan Nicora, Carrie D. Wilton, Rosemarie Deng, Shuang Dai, Ziyu Oksen, Ethan Gee, Aaron Fasani, Rick A. Tsalenko, Anya Tanjore, Deepti Gardner, James Smith, Richard D. Michener, Joshua K. Gladden, John M. Baker, Erin S. Petzold, Christopher J. Kim, Young-Mo Apffel, Alex Magnuson, Jon K. Burnum-Johnson, Kristin E. |
author_facet | Bilbao, Aivett Munoz, Nathalie Kim, Joonhoon Orton, Daniel J. Gao, Yuqian Poorey, Kunal Pomraning, Kyle R. Weitz, Karl Burnet, Meagan Nicora, Carrie D. Wilton, Rosemarie Deng, Shuang Dai, Ziyu Oksen, Ethan Gee, Aaron Fasani, Rick A. Tsalenko, Anya Tanjore, Deepti Gardner, James Smith, Richard D. Michener, Joshua K. Gladden, John M. Baker, Erin S. Petzold, Christopher J. Kim, Young-Mo Apffel, Alex Magnuson, Jon K. Burnum-Johnson, Kristin E. |
author_sort | Bilbao, Aivett |
collection | PubMed |
description | Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. |
format | Online Article Text |
id | pubmed-10147702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101477022023-04-30 PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements Bilbao, Aivett Munoz, Nathalie Kim, Joonhoon Orton, Daniel J. Gao, Yuqian Poorey, Kunal Pomraning, Kyle R. Weitz, Karl Burnet, Meagan Nicora, Carrie D. Wilton, Rosemarie Deng, Shuang Dai, Ziyu Oksen, Ethan Gee, Aaron Fasani, Rick A. Tsalenko, Anya Tanjore, Deepti Gardner, James Smith, Richard D. Michener, Joshua K. Gladden, John M. Baker, Erin S. Petzold, Christopher J. Kim, Young-Mo Apffel, Alex Magnuson, Jon K. Burnum-Johnson, Kristin E. Nat Commun Article Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. Nature Publishing Group UK 2023-04-28 /pmc/articles/PMC10147702/ /pubmed/37117207 http://dx.doi.org/10.1038/s41467-023-37031-9 Text en © Battelle Memorial Institute and the Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Bilbao, Aivett Munoz, Nathalie Kim, Joonhoon Orton, Daniel J. Gao, Yuqian Poorey, Kunal Pomraning, Kyle R. Weitz, Karl Burnet, Meagan Nicora, Carrie D. Wilton, Rosemarie Deng, Shuang Dai, Ziyu Oksen, Ethan Gee, Aaron Fasani, Rick A. Tsalenko, Anya Tanjore, Deepti Gardner, James Smith, Richard D. Michener, Joshua K. Gladden, John M. Baker, Erin S. Petzold, Christopher J. Kim, Young-Mo Apffel, Alex Magnuson, Jon K. Burnum-Johnson, Kristin E. PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
title | PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
title_full | PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
title_fullStr | PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
title_full_unstemmed | PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
title_short | PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
title_sort | peakdecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147702/ https://www.ncbi.nlm.nih.gov/pubmed/37117207 http://dx.doi.org/10.1038/s41467-023-37031-9 |
work_keys_str_mv | AT bilbaoaivett peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT munoznathalie peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT kimjoonhoon peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT ortondanielj peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT gaoyuqian peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT pooreykunal peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT pomraningkyler peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT weitzkarl peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT burnetmeagan peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT nicoracarried peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT wiltonrosemarie peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT dengshuang peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT daiziyu peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT oksenethan peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT geeaaron peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT fasaniricka peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT tsalenkoanya peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT tanjoredeepti peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT gardnerjames peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT smithrichardd peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT michenerjoshuak peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT gladdenjohnm peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT bakererins peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT petzoldchristopherj peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT kimyoungmo peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT apffelalex peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT magnusonjonk peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements AT burnumjohnsonkristine peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements |