Cargando…

PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous...

Descripción completa

Detalles Bibliográficos
Autores principales: Bilbao, Aivett, Munoz, Nathalie, Kim, Joonhoon, Orton, Daniel J., Gao, Yuqian, Poorey, Kunal, Pomraning, Kyle R., Weitz, Karl, Burnet, Meagan, Nicora, Carrie D., Wilton, Rosemarie, Deng, Shuang, Dai, Ziyu, Oksen, Ethan, Gee, Aaron, Fasani, Rick A., Tsalenko, Anya, Tanjore, Deepti, Gardner, James, Smith, Richard D., Michener, Joshua K., Gladden, John M., Baker, Erin S., Petzold, Christopher J., Kim, Young-Mo, Apffel, Alex, Magnuson, Jon K., Burnum-Johnson, Kristin E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147702/
https://www.ncbi.nlm.nih.gov/pubmed/37117207
http://dx.doi.org/10.1038/s41467-023-37031-9
_version_ 1785034847172952064
author Bilbao, Aivett
Munoz, Nathalie
Kim, Joonhoon
Orton, Daniel J.
Gao, Yuqian
Poorey, Kunal
Pomraning, Kyle R.
Weitz, Karl
Burnet, Meagan
Nicora, Carrie D.
Wilton, Rosemarie
Deng, Shuang
Dai, Ziyu
Oksen, Ethan
Gee, Aaron
Fasani, Rick A.
Tsalenko, Anya
Tanjore, Deepti
Gardner, James
Smith, Richard D.
Michener, Joshua K.
Gladden, John M.
Baker, Erin S.
Petzold, Christopher J.
Kim, Young-Mo
Apffel, Alex
Magnuson, Jon K.
Burnum-Johnson, Kristin E.
author_facet Bilbao, Aivett
Munoz, Nathalie
Kim, Joonhoon
Orton, Daniel J.
Gao, Yuqian
Poorey, Kunal
Pomraning, Kyle R.
Weitz, Karl
Burnet, Meagan
Nicora, Carrie D.
Wilton, Rosemarie
Deng, Shuang
Dai, Ziyu
Oksen, Ethan
Gee, Aaron
Fasani, Rick A.
Tsalenko, Anya
Tanjore, Deepti
Gardner, James
Smith, Richard D.
Michener, Joshua K.
Gladden, John M.
Baker, Erin S.
Petzold, Christopher J.
Kim, Young-Mo
Apffel, Alex
Magnuson, Jon K.
Burnum-Johnson, Kristin E.
author_sort Bilbao, Aivett
collection PubMed
description Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.
format Online
Article
Text
id pubmed-10147702
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101477022023-04-30 PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements Bilbao, Aivett Munoz, Nathalie Kim, Joonhoon Orton, Daniel J. Gao, Yuqian Poorey, Kunal Pomraning, Kyle R. Weitz, Karl Burnet, Meagan Nicora, Carrie D. Wilton, Rosemarie Deng, Shuang Dai, Ziyu Oksen, Ethan Gee, Aaron Fasani, Rick A. Tsalenko, Anya Tanjore, Deepti Gardner, James Smith, Richard D. Michener, Joshua K. Gladden, John M. Baker, Erin S. Petzold, Christopher J. Kim, Young-Mo Apffel, Alex Magnuson, Jon K. Burnum-Johnson, Kristin E. Nat Commun Article Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards. Nature Publishing Group UK 2023-04-28 /pmc/articles/PMC10147702/ /pubmed/37117207 http://dx.doi.org/10.1038/s41467-023-37031-9 Text en © Battelle Memorial Institute and the Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bilbao, Aivett
Munoz, Nathalie
Kim, Joonhoon
Orton, Daniel J.
Gao, Yuqian
Poorey, Kunal
Pomraning, Kyle R.
Weitz, Karl
Burnet, Meagan
Nicora, Carrie D.
Wilton, Rosemarie
Deng, Shuang
Dai, Ziyu
Oksen, Ethan
Gee, Aaron
Fasani, Rick A.
Tsalenko, Anya
Tanjore, Deepti
Gardner, James
Smith, Richard D.
Michener, Joshua K.
Gladden, John M.
Baker, Erin S.
Petzold, Christopher J.
Kim, Young-Mo
Apffel, Alex
Magnuson, Jon K.
Burnum-Johnson, Kristin E.
PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
title PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
title_full PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
title_fullStr PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
title_full_unstemmed PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
title_short PeakDecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
title_sort peakdecoder enables machine learning-based metabolite annotation and accurate profiling in multidimensional mass spectrometry measurements
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147702/
https://www.ncbi.nlm.nih.gov/pubmed/37117207
http://dx.doi.org/10.1038/s41467-023-37031-9
work_keys_str_mv AT bilbaoaivett peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT munoznathalie peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT kimjoonhoon peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT ortondanielj peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT gaoyuqian peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT pooreykunal peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT pomraningkyler peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT weitzkarl peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT burnetmeagan peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT nicoracarried peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT wiltonrosemarie peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT dengshuang peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT daiziyu peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT oksenethan peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT geeaaron peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT fasaniricka peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT tsalenkoanya peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT tanjoredeepti peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT gardnerjames peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT smithrichardd peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT michenerjoshuak peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT gladdenjohnm peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT bakererins peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT petzoldchristopherj peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT kimyoungmo peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT apffelalex peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT magnusonjonk peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements
AT burnumjohnsonkristine peakdecoderenablesmachinelearningbasedmetaboliteannotationandaccurateprofilinginmultidimensionalmassspectrometrymeasurements