Cargando…
Aberrant topology of white matter networks in patients with methamphetamine dependence and its application in support vector machine-based classification
Brain white matter (WM) networks have been widely studied in neuropsychiatric disorders. However, few studies have evaluated alterations in WM network topological organization in patients with methamphetamine (MA) dependence. Therefore, using machine learning classification methods to analyze WM net...
Autores principales: | Cheng, Ping, Li, Yadi, Wang, Gaoyan, Dong, Haibo, Liu, Huifen, Shen, Wenwen, Zhou, Wenhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147725/ https://www.ncbi.nlm.nih.gov/pubmed/37117256 http://dx.doi.org/10.1038/s41598-023-33199-8 |
Ejemplares similares
-
Abnormal resting-state functional connectome in methamphetamine-dependent patients and its application in machine-learning-based classification
por: Li, Yadi, et al.
Publicado: (2022) -
Transmembrane protein topology prediction using support vector machines
por: Nugent, Timothy, et al.
Publicado: (2009) -
White-matter functional topology: a neuromarker for classification and prediction in unmedicated depression
por: Li, Jiao, et al.
Publicado: (2020) -
Support Vector Machine Implementations for Classification & Clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2006) -
The motivation against change in male methamphetamine users in the compulsory detoxification setting
por: Shen, Wenwen, et al.
Publicado: (2023)