Cargando…

Central nodes of canine functional brain networks are concentrated in the cingulate gyrus

Compared to the field of human fMRI, knowledge about functional networks in dogs is scarce. In this paper, we present the first anatomically-defined ROI (region of interest) based functional network map of the companion dog brain. We scanned 33 awake dogs in a “task-free condition”. Our trained subj...

Descripción completa

Detalles Bibliográficos
Autores principales: Szabó, Dóra, Janosov, Milán, Czeibert, Kálmán, Gácsi, Márta, Kubinyi, Enikő
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147816/
https://www.ncbi.nlm.nih.gov/pubmed/36995432
http://dx.doi.org/10.1007/s00429-023-02625-y
Descripción
Sumario:Compared to the field of human fMRI, knowledge about functional networks in dogs is scarce. In this paper, we present the first anatomically-defined ROI (region of interest) based functional network map of the companion dog brain. We scanned 33 awake dogs in a “task-free condition”. Our trained subjects, similarly to humans, remain willingly motionless during scanning. Our goal is to provide a reference map with a current best estimate for the organisation of the cerebral cortex as measured by functional connectivity. The findings extend a previous spatial ICA (independent component analysis) study (Szabo et al. in Sci Rep 9(1):1.25. 10.1038/s41598-019-51752-2, 2019), with the current study including (1) more subjects and (2) improved scanning protocol to avoid asymmetric lateral distortions. In dogs, similarly to humans (Sacca et al. in J Neurosci Methods. 10.1016/j.jneumeth.2021.109084, 2021), ageing resulted in increasing framewise displacement (i.e. head motion) in the scanner. Despite the inherently different approaches between model-free ICA and model-based ROI, the resulting functional networks show a remarkable similarity. However, in the present study, we did not detect a designated auditory network. Instead, we identified two highly connected, lateralised multi-region networks extending to non-homotropic regions (Sylvian L, Sylvian R), including the respective auditory regions, together with the associative and sensorimotor cortices and the insular cortex. The attention and control networks were not split into two fully separated, dedicated networks. Overall, in dogs, fronto-parietal networks and hubs were less dominant than in humans, with the cingulate gyrus playing a central role. The current manuscript provides the first attempt to map whole-brain functional networks in dogs via a model-based approach. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00429-023-02625-y.