Cargando…
Evaluating the feasibility of batteries for second-life applications using machine learning
This article presents a combination of machine learning techniques to enable prompt evaluation of retired electric vehicle batteries as to either retain those batteries for a second-life application and extend their operation beyond the original and first intent or send them to recycling facilities....
Autores principales: | Takahashi, Aki, Allam, Anirudh, Onori, Simona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148029/ https://www.ncbi.nlm.nih.gov/pubmed/37128548 http://dx.doi.org/10.1016/j.isci.2023.106547 |
Ejemplares similares
-
Pushing the Eenvelope in Battery Estimation Algorithms
por: Allam, Anirudh, et al.
Publicado: (2020) -
Lithium-ion battery aging dataset based on electric vehicle real-driving profiles
por: Pozzato, Gabriele, et al.
Publicado: (2022) -
Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries
por: Allam, Omar, et al.
Publicado: (2018) -
Experimental data of lithium-ion batteries under galvanostatic discharge tests at different rates and temperatures of operation
por: Catenaro, Edoardo, et al.
Publicado: (2021) -
Machine learning for flow batteries: opportunities and challenges
por: Li, Tianyu, et al.
Publicado: (2022)