Cargando…

Mechanisms of NAT10 as ac4C writer in diseases

In the early stage, N4-acetylcytidine (ac4C) was regarded as a conservative nucleoside present on tRNA and rRNA. Recently, studies have shown that ac4C also exists in human and yeast mRNA. N-Acetyltransferase-like protein 10 (NAT10) is the first enzyme to be found to catalyze ac4C production in euka...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Lihua, Zhong, Xiaolin, Cao, Wenyu, Liu, Jianghua, Zu, Xuyu, Chen, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148080/
https://www.ncbi.nlm.nih.gov/pubmed/37128278
http://dx.doi.org/10.1016/j.omtn.2023.03.023
Descripción
Sumario:In the early stage, N4-acetylcytidine (ac4C) was regarded as a conservative nucleoside present on tRNA and rRNA. Recently, studies have shown that ac4C also exists in human and yeast mRNA. N-Acetyltransferase-like protein 10 (NAT10) is the first enzyme to be found to catalyze ac4C production in eukaryotic RNA and has acetyltransferase activity and RNA-binding activity. Here, we first describe the structure and cellular localization of NAT10. Then, we conclude the active roles of NAT10 as the ac4C “writer” in mRNA stability and translation efficiency, oocyte maturation, bone remodeling, and fatty acid metabolism. With respect to disease, we focused on the promoting functions of NAT10 in proliferation, metastasis, and apoptosis in multiple tumors. The immune regulatory role of NAT10 in systemic lupus erythematosus and the maintenance role of NAT10 in virus RNA stability and replication in influenza A virus are also introduced. This review identifies NAT10 as a potential target for diagnosis, therapy, and prognosis in clinical application.