Cargando…
Draft genome sequence data of Enterococcus faecium R9, a multiple enterocins-producing strain
Food contamination by pathogens results in serious health problems and economic losses. Chemical food preservatives pose a risk to human health when used in food preservation. To increase the shelf life of the products and prevent spoilage, the dairy sector is considering natural preservatives such...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148084/ https://www.ncbi.nlm.nih.gov/pubmed/37128584 http://dx.doi.org/10.1016/j.dib.2023.109151 |
_version_ | 1785034922722852864 |
---|---|
author | Akbar, Abrar Al-Momin, Sabah Kishk, Mohamed Al-Ateeqi, Abdulaziz Shajan, Anisha Rahmeh, Rita |
author_facet | Akbar, Abrar Al-Momin, Sabah Kishk, Mohamed Al-Ateeqi, Abdulaziz Shajan, Anisha Rahmeh, Rita |
author_sort | Akbar, Abrar |
collection | PubMed |
description | Food contamination by pathogens results in serious health problems and economic losses. Chemical food preservatives pose a risk to human health when used in food preservation. To increase the shelf life of the products and prevent spoilage, the dairy sector is considering natural preservatives such the ribosomally synthesized peptides, bacteriocins. Here we present the draft genome sequence of Enterococcus faecium strain R9 producing three bacteriocins isolated from raw camel milk. These bacteriocins showed valuable technological properties, such as sensitivity to proteolytic enzymes, heat stability, and wide range of pH tolerance. The 2 × 250 bp paired end reads sequencing was performed on Illumina HiSeq 2500 sequencing. The genome sequence consisted of 3,598,862 bases, with a GC content of 37.94% bases. The number of raw reads was 4,670,510, and the assembly N50 score was 65,355 bp with a 310.28 average coverage. A total of 3,086 coding sequences (CDSs) was predicted with 2,126 CDSs with a known function and 127 with a signal peptide. Annotation of the genome sequence revealed bacteriocins encoding genes, namely, enterocin B, enterocin P, and two-component enterocin X (X-alfa and X-beta subunits). These enterocins are beneficial for controlling Listeria monocytogenes in the food industry. Genome sequence of Enterococcus faecium R9 has been deposited at the gene bank under BioSample accession number JALJED000000000 and are available in Mendeley Data [1]. |
format | Online Article Text |
id | pubmed-10148084 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-101480842023-04-30 Draft genome sequence data of Enterococcus faecium R9, a multiple enterocins-producing strain Akbar, Abrar Al-Momin, Sabah Kishk, Mohamed Al-Ateeqi, Abdulaziz Shajan, Anisha Rahmeh, Rita Data Brief Data Article Food contamination by pathogens results in serious health problems and economic losses. Chemical food preservatives pose a risk to human health when used in food preservation. To increase the shelf life of the products and prevent spoilage, the dairy sector is considering natural preservatives such the ribosomally synthesized peptides, bacteriocins. Here we present the draft genome sequence of Enterococcus faecium strain R9 producing three bacteriocins isolated from raw camel milk. These bacteriocins showed valuable technological properties, such as sensitivity to proteolytic enzymes, heat stability, and wide range of pH tolerance. The 2 × 250 bp paired end reads sequencing was performed on Illumina HiSeq 2500 sequencing. The genome sequence consisted of 3,598,862 bases, with a GC content of 37.94% bases. The number of raw reads was 4,670,510, and the assembly N50 score was 65,355 bp with a 310.28 average coverage. A total of 3,086 coding sequences (CDSs) was predicted with 2,126 CDSs with a known function and 127 with a signal peptide. Annotation of the genome sequence revealed bacteriocins encoding genes, namely, enterocin B, enterocin P, and two-component enterocin X (X-alfa and X-beta subunits). These enterocins are beneficial for controlling Listeria monocytogenes in the food industry. Genome sequence of Enterococcus faecium R9 has been deposited at the gene bank under BioSample accession number JALJED000000000 and are available in Mendeley Data [1]. Elsevier 2023-04-14 /pmc/articles/PMC10148084/ /pubmed/37128584 http://dx.doi.org/10.1016/j.dib.2023.109151 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Data Article Akbar, Abrar Al-Momin, Sabah Kishk, Mohamed Al-Ateeqi, Abdulaziz Shajan, Anisha Rahmeh, Rita Draft genome sequence data of Enterococcus faecium R9, a multiple enterocins-producing strain |
title | Draft genome sequence data of Enterococcus faecium R9, a multiple enterocins-producing strain |
title_full | Draft genome sequence data of Enterococcus faecium R9, a multiple enterocins-producing strain |
title_fullStr | Draft genome sequence data of Enterococcus faecium R9, a multiple enterocins-producing strain |
title_full_unstemmed | Draft genome sequence data of Enterococcus faecium R9, a multiple enterocins-producing strain |
title_short | Draft genome sequence data of Enterococcus faecium R9, a multiple enterocins-producing strain |
title_sort | draft genome sequence data of enterococcus faecium r9, a multiple enterocins-producing strain |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148084/ https://www.ncbi.nlm.nih.gov/pubmed/37128584 http://dx.doi.org/10.1016/j.dib.2023.109151 |
work_keys_str_mv | AT akbarabrar draftgenomesequencedataofenterococcusfaeciumr9amultipleenterocinsproducingstrain AT almominsabah draftgenomesequencedataofenterococcusfaeciumr9amultipleenterocinsproducingstrain AT kishkmohamed draftgenomesequencedataofenterococcusfaeciumr9amultipleenterocinsproducingstrain AT alateeqiabdulaziz draftgenomesequencedataofenterococcusfaeciumr9amultipleenterocinsproducingstrain AT shajananisha draftgenomesequencedataofenterococcusfaeciumr9amultipleenterocinsproducingstrain AT rahmehrita draftgenomesequencedataofenterococcusfaeciumr9amultipleenterocinsproducingstrain |