Cargando…
Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method
Municipal solid waste (MSW) management is vital in achieving sustainable development goals. It is a complex activity embracing collection, transport, recycling, and disposal; and whose management depends on proper strategic decision-making. The use of decision support methods such as multi-criteria...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148105/ https://www.ncbi.nlm.nih.gov/pubmed/37128307 http://dx.doi.org/10.1016/j.heliyon.2023.e15481 |
_version_ | 1785034927481290752 |
---|---|
author | Moreno-Solaz, Héctor Artacho-Ramírez, Miguel-Ángel Aragonés-Beltrán, Pablo Cloquell-Ballester, Víctor-Andrés |
author_facet | Moreno-Solaz, Héctor Artacho-Ramírez, Miguel-Ángel Aragonés-Beltrán, Pablo Cloquell-Ballester, Víctor-Andrés |
author_sort | Moreno-Solaz, Héctor |
collection | PubMed |
description | Municipal solid waste (MSW) management is vital in achieving sustainable development goals. It is a complex activity embracing collection, transport, recycling, and disposal; and whose management depends on proper strategic decision-making. The use of decision support methods such as multi-criteria decision-making (MCDM) is widespread in MSW management. However, their application mainly focuses on selecting plant locations and the best technologies for waste treatment. Despite the critical role played by transport in promoting sustainability, MCDM has seldom been applied for the selection of sustainable transport alternatives in the field of MSW management. There are a few MCDM studies about choosing waste collection vehicles, but none that include the most recent green vehicles among the options or consider feasible future scenarios. In this article, different engine technologies for collection trucks (diesel, compressed natural gas (CNG), hybrid CNG-electric, electric, and hydrogen) are evaluated under sustainability criteria in a Spanish city by applying the stratified best and worst method (SBWM). This method enables considering the uncertainty associated with future events to establish various feasible scenarios. The results show that the best-valued options are electric and diesel trucks, in that order, followed by CNG and hybrid CNG-electric, and with hydrogen-powered trucks coming last. The SBWM has proven helpful in defining a comprehensive framework for selecting the most suitable engine technology to support long-term MSW collection. Considering sustainability among the criteria and feasible future scenarios in waste management collection decision-making provides more comprehensive and conclusive results that help managers and policymakers make better informed and more reliable decisions. |
format | Online Article Text |
id | pubmed-10148105 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-101481052023-04-30 Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method Moreno-Solaz, Héctor Artacho-Ramírez, Miguel-Ángel Aragonés-Beltrán, Pablo Cloquell-Ballester, Víctor-Andrés Heliyon Research Article Municipal solid waste (MSW) management is vital in achieving sustainable development goals. It is a complex activity embracing collection, transport, recycling, and disposal; and whose management depends on proper strategic decision-making. The use of decision support methods such as multi-criteria decision-making (MCDM) is widespread in MSW management. However, their application mainly focuses on selecting plant locations and the best technologies for waste treatment. Despite the critical role played by transport in promoting sustainability, MCDM has seldom been applied for the selection of sustainable transport alternatives in the field of MSW management. There are a few MCDM studies about choosing waste collection vehicles, but none that include the most recent green vehicles among the options or consider feasible future scenarios. In this article, different engine technologies for collection trucks (diesel, compressed natural gas (CNG), hybrid CNG-electric, electric, and hydrogen) are evaluated under sustainability criteria in a Spanish city by applying the stratified best and worst method (SBWM). This method enables considering the uncertainty associated with future events to establish various feasible scenarios. The results show that the best-valued options are electric and diesel trucks, in that order, followed by CNG and hybrid CNG-electric, and with hydrogen-powered trucks coming last. The SBWM has proven helpful in defining a comprehensive framework for selecting the most suitable engine technology to support long-term MSW collection. Considering sustainability among the criteria and feasible future scenarios in waste management collection decision-making provides more comprehensive and conclusive results that help managers and policymakers make better informed and more reliable decisions. Elsevier 2023-04-14 /pmc/articles/PMC10148105/ /pubmed/37128307 http://dx.doi.org/10.1016/j.heliyon.2023.e15481 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Moreno-Solaz, Héctor Artacho-Ramírez, Miguel-Ángel Aragonés-Beltrán, Pablo Cloquell-Ballester, Víctor-Andrés Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method |
title | Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method |
title_full | Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method |
title_fullStr | Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method |
title_full_unstemmed | Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method |
title_short | Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method |
title_sort | sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148105/ https://www.ncbi.nlm.nih.gov/pubmed/37128307 http://dx.doi.org/10.1016/j.heliyon.2023.e15481 |
work_keys_str_mv | AT morenosolazhector sustainableselectionofwastecollectiontrucksconsideringfeasiblefuturescenariosbyapplyingthestratifiedbestandworstmethod AT artachoramirezmiguelangel sustainableselectionofwastecollectiontrucksconsideringfeasiblefuturescenariosbyapplyingthestratifiedbestandworstmethod AT aragonesbeltranpablo sustainableselectionofwastecollectiontrucksconsideringfeasiblefuturescenariosbyapplyingthestratifiedbestandworstmethod AT cloquellballestervictorandres sustainableselectionofwastecollectiontrucksconsideringfeasiblefuturescenariosbyapplyingthestratifiedbestandworstmethod |