Cargando…
Protocol for scalable top-down fabrication of InP nanopillars using a self-assembled random mask technique
Nanostructured III-V semiconductors are attractive for solar energy conversion applications owing to their excellent light harvesting and optoelectronic properties. Here, we present a protocol for scalable fabrication of III-V semiconductor nanopillars using a simple and cost-effective top-down appr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148223/ https://www.ncbi.nlm.nih.gov/pubmed/37083321 http://dx.doi.org/10.1016/j.xpro.2023.102237 |
Sumario: | Nanostructured III-V semiconductors are attractive for solar energy conversion applications owing to their excellent light harvesting and optoelectronic properties. Here, we present a protocol for scalable fabrication of III-V semiconductor nanopillars using a simple and cost-effective top-down approach, combining self-assembled random mask and plasma etching techniques. We describe the deposition of Au/SiO(2) layers to prepare random etch mask. We then detail the fabrication of nanopillars and photocathodes. Finally, we demonstrate III-V semiconductor nanopillars as a photoelectrode for photoelectrochemical water splitting. For complete details on the use and execution of this protocol, please refer to Narangari et al. (2021).(1) |
---|