Cargando…
Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation
OBJECTIVES: Dentin, the bulk material of the tooth, resemble the bone’s chemical composition and is considered a valuable bone substitute. In the current study, we assessed the cytotoxicity and osteogenic potential of demineralized dentin matrix (DDM) in comparison to HA nanoparticles (n-HA) on bone...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148431/ https://www.ncbi.nlm.nih.gov/pubmed/37118728 http://dx.doi.org/10.1186/s12903-023-02928-w |
_version_ | 1785034973600808960 |
---|---|
author | Sultan, Nessma Jayash, Soher Nagi |
author_facet | Sultan, Nessma Jayash, Soher Nagi |
author_sort | Sultan, Nessma |
collection | PubMed |
description | OBJECTIVES: Dentin, the bulk material of the tooth, resemble the bone’s chemical composition and is considered a valuable bone substitute. In the current study, we assessed the cytotoxicity and osteogenic potential of demineralized dentin matrix (DDM) in comparison to HA nanoparticles (n-HA) on bone marrow mesenchymal stem cells (BMMSCs) using a hydrogel formulation. MATERIALS AND METHODS: Human extracted teeth were minced into particles and treated via chemical demineralization using ethylene diamine tetra-acetic acid solution (EDTA) to produce DDM particles. DDM and n-HA particles were added to the sodium alginate then, the combination was dripped into a 5% (w/v) calcium chloride solution to obtain DDM hydrogel (DDMH) or nano-hydroxyapatite hydrogel (NHH). The particles were evaluated by dynamic light scattering (DLS) and the hydrogels were evaluated via scanning electron microscope (SEM). BMMSCs were treated with different hydrogel concentrations (25%, 50%, 75% and neat/100%) and cell viability was evaluated using MTT assay after 72 h of culture. Collagen-I (COL-I) gene expression was studied with real-time quantitative polymerase chain reaction (RT-qPCR) after 3 weeks of culture and alkaline phosphatase (ALP) activity was assessed using enzyme-linked immune sorbent assay (ELISA) over 7th, 10th, 14th and 21st days of culture. BMMSCs seeded in a complete culture medium were used as controls. One-way ANOVA was utilized to measure the significant differences in the tested groups. RESULTS: DLS measurements revealed that DDM and n-HA particles had negative values of zeta potential. SEM micrographs showed a porous microstructure of the tested hydrogels. The viability results revealed that 100% concentrations of either DDMH or NHH were cytotoxic to BMMSCs after 72 h of culture. However, the cytotoxicity of 25% and 50% concentrations of DDMH were not statistically significant compared to the control group. RT-qPCR showed that COL-I gene expression was significantly upregulated in BMMSCs cultured with 50% DDMH compared to all other treated or control groups (P < 0.01). ELISA analysis revealed that ALP level was significantly increased in the groups treated with 50% DDMH compared to 50% NHH after 21 days in culture (P < 0.001). CONCLUSION: The injectable hydrogel containing demineralized dentin matrix was successfully formulated. DDMH has a porous structure and has been shown to provide a supporting matrix for the viability and differentiation of BMMSCs. A 50% concentration of DDMH was revealed to be not cytotoxic to BMMSCs and may have a great potential to promote bone formation ability. |
format | Online Article Text |
id | pubmed-10148431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-101484312023-04-30 Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation Sultan, Nessma Jayash, Soher Nagi BMC Oral Health Research OBJECTIVES: Dentin, the bulk material of the tooth, resemble the bone’s chemical composition and is considered a valuable bone substitute. In the current study, we assessed the cytotoxicity and osteogenic potential of demineralized dentin matrix (DDM) in comparison to HA nanoparticles (n-HA) on bone marrow mesenchymal stem cells (BMMSCs) using a hydrogel formulation. MATERIALS AND METHODS: Human extracted teeth were minced into particles and treated via chemical demineralization using ethylene diamine tetra-acetic acid solution (EDTA) to produce DDM particles. DDM and n-HA particles were added to the sodium alginate then, the combination was dripped into a 5% (w/v) calcium chloride solution to obtain DDM hydrogel (DDMH) or nano-hydroxyapatite hydrogel (NHH). The particles were evaluated by dynamic light scattering (DLS) and the hydrogels were evaluated via scanning electron microscope (SEM). BMMSCs were treated with different hydrogel concentrations (25%, 50%, 75% and neat/100%) and cell viability was evaluated using MTT assay after 72 h of culture. Collagen-I (COL-I) gene expression was studied with real-time quantitative polymerase chain reaction (RT-qPCR) after 3 weeks of culture and alkaline phosphatase (ALP) activity was assessed using enzyme-linked immune sorbent assay (ELISA) over 7th, 10th, 14th and 21st days of culture. BMMSCs seeded in a complete culture medium were used as controls. One-way ANOVA was utilized to measure the significant differences in the tested groups. RESULTS: DLS measurements revealed that DDM and n-HA particles had negative values of zeta potential. SEM micrographs showed a porous microstructure of the tested hydrogels. The viability results revealed that 100% concentrations of either DDMH or NHH were cytotoxic to BMMSCs after 72 h of culture. However, the cytotoxicity of 25% and 50% concentrations of DDMH were not statistically significant compared to the control group. RT-qPCR showed that COL-I gene expression was significantly upregulated in BMMSCs cultured with 50% DDMH compared to all other treated or control groups (P < 0.01). ELISA analysis revealed that ALP level was significantly increased in the groups treated with 50% DDMH compared to 50% NHH after 21 days in culture (P < 0.001). CONCLUSION: The injectable hydrogel containing demineralized dentin matrix was successfully formulated. DDMH has a porous structure and has been shown to provide a supporting matrix for the viability and differentiation of BMMSCs. A 50% concentration of DDMH was revealed to be not cytotoxic to BMMSCs and may have a great potential to promote bone formation ability. BioMed Central 2023-04-28 /pmc/articles/PMC10148431/ /pubmed/37118728 http://dx.doi.org/10.1186/s12903-023-02928-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Sultan, Nessma Jayash, Soher Nagi Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation |
title | Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation |
title_full | Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation |
title_fullStr | Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation |
title_full_unstemmed | Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation |
title_short | Evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation |
title_sort | evaluation of osteogenic potential of demineralized dentin matrix hydrogel for bone formation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148431/ https://www.ncbi.nlm.nih.gov/pubmed/37118728 http://dx.doi.org/10.1186/s12903-023-02928-w |
work_keys_str_mv | AT sultannessma evaluationofosteogenicpotentialofdemineralizeddentinmatrixhydrogelforboneformation AT jayashsohernagi evaluationofosteogenicpotentialofdemineralizeddentinmatrixhydrogelforboneformation |