Cargando…

Transcription Factor E2F1 Regulates the Expression of ADRB2

Adrenergic beta-2-receptor (ADRB2) is highly expressed in various tissue cells, affecting the susceptibility, development, and drug efficacy of diseases such as bronchial asthma and malignant tumor. However, the transcriptional regulatory mechanism of the human ADRB2 gene remains unclear. This study...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Juan, Rui, Feifei, Hao, Zhongfen, Hang, Yun, Shu, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148742/
https://www.ncbi.nlm.nih.gov/pubmed/37128280
http://dx.doi.org/10.1155/2023/8210685
Descripción
Sumario:Adrenergic beta-2-receptor (ADRB2) is highly expressed in various tissue cells, affecting the susceptibility, development, and drug efficacy of diseases such as bronchial asthma and malignant tumor. However, the transcriptional regulatory mechanism of the human ADRB2 gene remains unclear. This study aimed to clarify whether E2F transcription factor 1 (E2F1) was involved in the transcriptional regulation of the human ADRB2 gene. First, the 5′ flanking region of the human ADRB2 gene was cloned, and its activity was detected using A549 and BEAS-2B cells. Second, it was found that the overexpression of E2F1 could increase promoter activity by a dual-luciferase reporter gene assay. In contrast, treatment of knockdown of E2F1 significantly resulted in a decrease in its promoter activity. Moreover, mutation of the binding site of E2F1 greatly reduced the potential of human ADRB2 promoter transcriptional activity to be regulated by E2F1 overexpression and knockdown. Additionally, by real-time quantitative PCR and Western blot analysis, we demonstrated that overexpression of E2F1 elevated the ADRB2 mRNA expression and protein levels while si-E2F1 reduced its expression. Finally, the consequence of the chromatin immunoprecipitation assay showed that E2F1 was able to bind to the promoter region of ADRB2 in vivo. These results confirmed that E2F1 upregulated the expression of the human ADRB2 gene.