Cargando…
Artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo
Treatment effect in clinical trials for major depressive disorders (RCT) can be viewed as the resultant of treatment specific and non-specific effects. Baseline individual propensity to respond non-specifically to any treatment or intervention can be considered as a major non-specific confounding ef...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148888/ https://www.ncbi.nlm.nih.gov/pubmed/37120641 http://dx.doi.org/10.1038/s41398-023-02443-0 |
_version_ | 1785035067985231872 |
---|---|
author | Gomeni, Roberto Bressolle-Gomeni, Françoise Fava, Maurizio |
author_facet | Gomeni, Roberto Bressolle-Gomeni, Françoise Fava, Maurizio |
author_sort | Gomeni, Roberto |
collection | PubMed |
description | Treatment effect in clinical trials for major depressive disorders (RCT) can be viewed as the resultant of treatment specific and non-specific effects. Baseline individual propensity to respond non-specifically to any treatment or intervention can be considered as a major non-specific confounding effect. The greater is the baseline propensity, the lower will be the chance to detect any treatment-specific effect. The statistical methodologies currently applied for analyzing RCTs doesn’t account for potential unbalance in the allocation of subjects to treatment arms due to heterogenous distributions of propensity. Hence, the groups to be compared may be imbalanced, and thus incomparable. Propensity weighting methodology was used to reduce baseline imbalances between arms. A randomized, double-blind, placebo controlled, three arms, parallel group, 8-week, fixed-dose study to evaluate efficacy of paroxetine CR 12.5 and 25 mg/day is presented as a cases study. An artificial intelligence model was developed to predict placebo response at week 8 in subjects assigned to placebo arm using changes from screening to baseline of individual Hamilton Depression Rating Scale items. This model was used to predict the probability to respond to placebo in each subject. The inverse of the probability was used as weight in the mixed-effects model applied to assess treatment effect. The analysis with and without propensity weight indicated that the weighted analysis provided an estimate of treatment effect and effect-size about twice larger than the non-weighted analysis. Propensity weighting provides an unbiased strategy to account for heterogeneous and uncontrolled placebo effect making patients’ data comparable across treatment arms. |
format | Online Article Text |
id | pubmed-10148888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-101488882023-05-01 Artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo Gomeni, Roberto Bressolle-Gomeni, Françoise Fava, Maurizio Transl Psychiatry Article Treatment effect in clinical trials for major depressive disorders (RCT) can be viewed as the resultant of treatment specific and non-specific effects. Baseline individual propensity to respond non-specifically to any treatment or intervention can be considered as a major non-specific confounding effect. The greater is the baseline propensity, the lower will be the chance to detect any treatment-specific effect. The statistical methodologies currently applied for analyzing RCTs doesn’t account for potential unbalance in the allocation of subjects to treatment arms due to heterogenous distributions of propensity. Hence, the groups to be compared may be imbalanced, and thus incomparable. Propensity weighting methodology was used to reduce baseline imbalances between arms. A randomized, double-blind, placebo controlled, three arms, parallel group, 8-week, fixed-dose study to evaluate efficacy of paroxetine CR 12.5 and 25 mg/day is presented as a cases study. An artificial intelligence model was developed to predict placebo response at week 8 in subjects assigned to placebo arm using changes from screening to baseline of individual Hamilton Depression Rating Scale items. This model was used to predict the probability to respond to placebo in each subject. The inverse of the probability was used as weight in the mixed-effects model applied to assess treatment effect. The analysis with and without propensity weight indicated that the weighted analysis provided an estimate of treatment effect and effect-size about twice larger than the non-weighted analysis. Propensity weighting provides an unbiased strategy to account for heterogeneous and uncontrolled placebo effect making patients’ data comparable across treatment arms. Nature Publishing Group UK 2023-04-29 /pmc/articles/PMC10148888/ /pubmed/37120641 http://dx.doi.org/10.1038/s41398-023-02443-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Gomeni, Roberto Bressolle-Gomeni, Françoise Fava, Maurizio Artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo |
title | Artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo |
title_full | Artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo |
title_fullStr | Artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo |
title_full_unstemmed | Artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo |
title_short | Artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo |
title_sort | artificial intelligence approach for the analysis of placebo-controlled clinical trials in major depressive disorders accounting for individual propensity to respond to placebo |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148888/ https://www.ncbi.nlm.nih.gov/pubmed/37120641 http://dx.doi.org/10.1038/s41398-023-02443-0 |
work_keys_str_mv | AT gomeniroberto artificialintelligenceapproachfortheanalysisofplacebocontrolledclinicaltrialsinmajordepressivedisordersaccountingforindividualpropensitytorespondtoplacebo AT bressollegomenifrancoise artificialintelligenceapproachfortheanalysisofplacebocontrolledclinicaltrialsinmajordepressivedisordersaccountingforindividualpropensitytorespondtoplacebo AT favamaurizio artificialintelligenceapproachfortheanalysisofplacebocontrolledclinicaltrialsinmajordepressivedisordersaccountingforindividualpropensitytorespondtoplacebo |