Cargando…

The Effect of Meteorological Factors on the COVID-19 Pandemic in Northeast Turkiye

Introduction Although various studies have been conducted on the relationship between meteorological factors and coronavirus disease 2019 (COVID-19), this issue has not been sufficiently clarified. In particular, there are a limited number of studies on the course of COVID-19 in the warmer-humidity...

Descripción completa

Detalles Bibliográficos
Autores principales: Altuntas, Gürkan, Cetin, Murat, Canakci, Mustafa Emin, Yazıcı, Mümin Murat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148944/
https://www.ncbi.nlm.nih.gov/pubmed/37131559
http://dx.doi.org/10.7759/cureus.36934
Descripción
Sumario:Introduction Although various studies have been conducted on the relationship between meteorological factors and coronavirus disease 2019 (COVID-19), this issue has not been sufficiently clarified. In particular, there are a limited number of studies on the course of COVID-19 in the warmer-humidity seasons. Methods Patients presenting to the emergency departments of health institutions and to clinics set aside for cases of suspected COVID-19 in the province of Rize between 1 June and 31 August 2021 and who met the case definition based on the Turkish COVID-19 epidemiological guideline were included in this retrospective study. The effect of meteorological factors on case numbers throughout the study was investigated. Results During the study period, 80,490 tests were performed on patients presenting to emergency departments and clinics dedicated to patients with suspected COVID-19. The total case number was 16,270, with a median daily number of 64 (range 43-328). The total number of deaths was 103, with a median daily figure of 1.00 (range 0.00-1.25). According to the Poisson distribution analysis, it is found that the number of cases tended to increase at temperatures between 20.8 and 27.2°C. Conclusion It is predicted that the number of COVID-19 cases will not decrease with the increase in temperature in temperate regions with high rainfall. Therefore, unlike influenza, there may not be seasonal variation in the prevalence of COVID-19. The requisite measures should be adopted in health systems and hospitals to manage increases in case numbers associated with changes in meteorological factors.