Cargando…
Machine learning application for classification of Alzheimer's disease stages using (18)F-flortaucipir positron emission tomography
BACKGROUND: The progression of Alzheimer’s dementia (AD) can be classified into three stages: cognitive unimpairment (CU), mild cognitive impairment (MCI), and AD. The purpose of this study was to implement a machine learning (ML) framework for AD stage classification using the standard uptake value...
Autores principales: | Park, Sang Won, Yeo, Na Young, Lee, Jinsu, Lee, Suk-Hee, Byun, Junghyun, Park, Dong Young, Yum, Sujin, Kim, Jung-Kyeom, Byeon, Gihwan, Kim, Yeshin, Jang, Jae-Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149022/ https://www.ncbi.nlm.nih.gov/pubmed/37120537 http://dx.doi.org/10.1186/s12938-023-01107-w |
Ejemplares similares
-
Deep learning application for the classification of Alzheimer’s disease using (18)F-flortaucipir (AV-1451) tau positron emission tomography
por: Park, Sang Won, et al.
Publicado: (2023) -
Head-to-head comparison of tau positron emission tomography tracers [(18)F]flortaucipir and [(18)F]RO948
por: Smith, Ruben, et al.
Publicado: (2019) -
Predicting progression to dementia with “comprehensive visual rating scale” and machine learning algorithms
por: Park, Chaeyoon, et al.
Publicado: (2022) -
Influence of Sensory Impairments on Incidence of Dementia in the Korean Population
por: Oh, Gyu han, et al.
Publicado: (2023) -
Dementia Incidence Rate Before and After Implementing the National Responsibility Policy for Dementia Care in Patients With Vascular Risk Factors in Korea
por: Byeon, Gihwan, et al.
Publicado: (2023)