Cargando…

Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis

BACKGROUND: Studies have shown that dengue virus transmission increases in association with ambient temperature. We performed a systematic review and meta-analysis to assess the effect of both high temperatures and heatwave events on dengue transmission in different climate zones globally. METHODS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Damtew, Yohannes Tefera, Tong, Michael, Varghese, Blesson Mathew, Anikeeva, Olga, Hansen, Alana, Dear, Keith, Zhang, Ying, Morgan, Geoffrey, Driscoll, Tim, Capon, Tony, Bi, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149186/
https://www.ncbi.nlm.nih.gov/pubmed/37088034
http://dx.doi.org/10.1016/j.ebiom.2023.104582
_version_ 1785035113977872384
author Damtew, Yohannes Tefera
Tong, Michael
Varghese, Blesson Mathew
Anikeeva, Olga
Hansen, Alana
Dear, Keith
Zhang, Ying
Morgan, Geoffrey
Driscoll, Tim
Capon, Tony
Bi, Peng
author_facet Damtew, Yohannes Tefera
Tong, Michael
Varghese, Blesson Mathew
Anikeeva, Olga
Hansen, Alana
Dear, Keith
Zhang, Ying
Morgan, Geoffrey
Driscoll, Tim
Capon, Tony
Bi, Peng
author_sort Damtew, Yohannes Tefera
collection PubMed
description BACKGROUND: Studies have shown that dengue virus transmission increases in association with ambient temperature. We performed a systematic review and meta-analysis to assess the effect of both high temperatures and heatwave events on dengue transmission in different climate zones globally. METHODS: A systematic literature search was conducted in PubMed, Scopus, Embase, and Web of Science from January 1990 to September 20, 2022. We included peer reviewed original observational studies using ecological time series, case crossover, or case series study designs reporting the association of high temperatures and heatwave with dengue and comparing risks over different exposures or time periods. Studies classified as case reports, clinical trials, non-human studies, conference abstracts, editorials, reviews, books, posters, commentaries; and studies that examined only seasonal effects were excluded. Effect estimates were extracted from published literature. A random effects meta-analysis was performed to pool the relative risks (RRs) of dengue infection per 1 °C increase in temperature, and further subgroup analyses were also conducted. The quality and strength of evidence were evaluated following the Navigation Guide systematic review methodology framework. The review protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO). FINDINGS: The study selection process yielded 6367 studies. A total of 106 studies covering more than four million dengue cases fulfilled the inclusion criteria; of these, 54 studies were eligible for meta-analysis. The overall pooled estimate showed a 13% increase in risk of dengue infection (RR = 1.13; 95% confidence interval (CI): 1.11–1.16, I(2) = 98.0%) for each 1 °C increase in high temperatures. Subgroup analyses by climate zones suggested greater effects of temperature in tropical monsoon climate zone (RR = 1.29, 95% CI: 1.11–1.51) and humid subtropical climate zone (RR = 1.20, 95% CI: 1.15–1.25). Heatwave events showed association with an increased risk of dengue infection (RR = 1.08; 95% CI: 0.95–1.23, I(2) = 88.9%), despite a wide confidence interval. The overall strength of evidence was found to be “sufficient” for high temperatures but “limited” for heatwaves. Our results showed that high temperatures increased the risk of dengue infection, albeit with varying risks across climate zones and different levels of national income. INTERPRETATION: High temperatures increased the relative risk of dengue infection. Future studies on the association between temperature and dengue infection should consider local and regional climate, socio-demographic and environmental characteristics to explore vulnerability at local and regional levels for tailored prevention. FUNDING: Australian Research Council Discovery Program.
format Online
Article
Text
id pubmed-10149186
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-101491862023-05-01 Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis Damtew, Yohannes Tefera Tong, Michael Varghese, Blesson Mathew Anikeeva, Olga Hansen, Alana Dear, Keith Zhang, Ying Morgan, Geoffrey Driscoll, Tim Capon, Tony Bi, Peng eBioMedicine Articles BACKGROUND: Studies have shown that dengue virus transmission increases in association with ambient temperature. We performed a systematic review and meta-analysis to assess the effect of both high temperatures and heatwave events on dengue transmission in different climate zones globally. METHODS: A systematic literature search was conducted in PubMed, Scopus, Embase, and Web of Science from January 1990 to September 20, 2022. We included peer reviewed original observational studies using ecological time series, case crossover, or case series study designs reporting the association of high temperatures and heatwave with dengue and comparing risks over different exposures or time periods. Studies classified as case reports, clinical trials, non-human studies, conference abstracts, editorials, reviews, books, posters, commentaries; and studies that examined only seasonal effects were excluded. Effect estimates were extracted from published literature. A random effects meta-analysis was performed to pool the relative risks (RRs) of dengue infection per 1 °C increase in temperature, and further subgroup analyses were also conducted. The quality and strength of evidence were evaluated following the Navigation Guide systematic review methodology framework. The review protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO). FINDINGS: The study selection process yielded 6367 studies. A total of 106 studies covering more than four million dengue cases fulfilled the inclusion criteria; of these, 54 studies were eligible for meta-analysis. The overall pooled estimate showed a 13% increase in risk of dengue infection (RR = 1.13; 95% confidence interval (CI): 1.11–1.16, I(2) = 98.0%) for each 1 °C increase in high temperatures. Subgroup analyses by climate zones suggested greater effects of temperature in tropical monsoon climate zone (RR = 1.29, 95% CI: 1.11–1.51) and humid subtropical climate zone (RR = 1.20, 95% CI: 1.15–1.25). Heatwave events showed association with an increased risk of dengue infection (RR = 1.08; 95% CI: 0.95–1.23, I(2) = 88.9%), despite a wide confidence interval. The overall strength of evidence was found to be “sufficient” for high temperatures but “limited” for heatwaves. Our results showed that high temperatures increased the risk of dengue infection, albeit with varying risks across climate zones and different levels of national income. INTERPRETATION: High temperatures increased the relative risk of dengue infection. Future studies on the association between temperature and dengue infection should consider local and regional climate, socio-demographic and environmental characteristics to explore vulnerability at local and regional levels for tailored prevention. FUNDING: Australian Research Council Discovery Program. Elsevier 2023-04-21 /pmc/articles/PMC10149186/ /pubmed/37088034 http://dx.doi.org/10.1016/j.ebiom.2023.104582 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Articles
Damtew, Yohannes Tefera
Tong, Michael
Varghese, Blesson Mathew
Anikeeva, Olga
Hansen, Alana
Dear, Keith
Zhang, Ying
Morgan, Geoffrey
Driscoll, Tim
Capon, Tony
Bi, Peng
Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis
title Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis
title_full Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis
title_fullStr Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis
title_full_unstemmed Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis
title_short Effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis
title_sort effects of high temperatures and heatwaves on dengue fever: a systematic review and meta-analysis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149186/
https://www.ncbi.nlm.nih.gov/pubmed/37088034
http://dx.doi.org/10.1016/j.ebiom.2023.104582
work_keys_str_mv AT damtewyohannestefera effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT tongmichael effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT vargheseblessonmathew effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT anikeevaolga effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT hansenalana effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT dearkeith effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT zhangying effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT morgangeoffrey effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT driscolltim effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT capontony effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis
AT bipeng effectsofhightemperaturesandheatwavesondenguefeverasystematicreviewandmetaanalysis