Cargando…

Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation

Wide-bandgap (WBG) perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large open-circuit voltage (V(OC)) deficits, limiting their photovoltaic performance. Here, we address these issues by in-situ forming a well-defined 2D perovskite (PMA)(2)PbCl(4) (phenmet...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Liu, Jin, Yongbin, Fang, Zheng, Zhang, Jinyan, Nan, Ziang, Zheng, Lingfang, Zhuang, Huihu, Zeng, Qinghua, Liu, Kaikai, Deng, Bingru, Feng, Huiping, Luo, Yujie, Tian, Chengbo, Cui, Changcai, Xie, Liqiang, Xu, Xipeng, Wei, Zhanhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149431/
https://www.ncbi.nlm.nih.gov/pubmed/37121964
http://dx.doi.org/10.1007/s40820-023-01090-w
_version_ 1785035161626214400
author Yang, Liu
Jin, Yongbin
Fang, Zheng
Zhang, Jinyan
Nan, Ziang
Zheng, Lingfang
Zhuang, Huihu
Zeng, Qinghua
Liu, Kaikai
Deng, Bingru
Feng, Huiping
Luo, Yujie
Tian, Chengbo
Cui, Changcai
Xie, Liqiang
Xu, Xipeng
Wei, Zhanhua
author_facet Yang, Liu
Jin, Yongbin
Fang, Zheng
Zhang, Jinyan
Nan, Ziang
Zheng, Lingfang
Zhuang, Huihu
Zeng, Qinghua
Liu, Kaikai
Deng, Bingru
Feng, Huiping
Luo, Yujie
Tian, Chengbo
Cui, Changcai
Xie, Liqiang
Xu, Xipeng
Wei, Zhanhua
author_sort Yang, Liu
collection PubMed
description Wide-bandgap (WBG) perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large open-circuit voltage (V(OC)) deficits, limiting their photovoltaic performance. Here, we address these issues by in-situ forming a well-defined 2D perovskite (PMA)(2)PbCl(4) (phenmethylammonium is referred to as PMA) passivation layer on top of the WBG active layer. The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent. First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase. The (PMA)(2)PbCl(4) forms improved type-I energy level alignment with the WBG perovskite, reducing the electron recombination at the perovskite/hole-transport-layer interface. Applying this strategy in fabricating semi-transparent WBG perovskite solar cells (indium tin oxide as the back electrode), the V(OC) deficits can be reduced to 0.49 V, comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes. Consequently, we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high V(OC) of 1.23 V. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-023-01090-w.
format Online
Article
Text
id pubmed-10149431
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Nature Singapore
record_format MEDLINE/PubMed
spelling pubmed-101494312023-05-02 Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation Yang, Liu Jin, Yongbin Fang, Zheng Zhang, Jinyan Nan, Ziang Zheng, Lingfang Zhuang, Huihu Zeng, Qinghua Liu, Kaikai Deng, Bingru Feng, Huiping Luo, Yujie Tian, Chengbo Cui, Changcai Xie, Liqiang Xu, Xipeng Wei, Zhanhua Nanomicro Lett Article Wide-bandgap (WBG) perovskite solar cells suffer from severe non-radiative recombination and exhibit relatively large open-circuit voltage (V(OC)) deficits, limiting their photovoltaic performance. Here, we address these issues by in-situ forming a well-defined 2D perovskite (PMA)(2)PbCl(4) (phenmethylammonium is referred to as PMA) passivation layer on top of the WBG active layer. The 2D layer with highly pure dimensionality and halide components is realized by intentionally tailoring the side-chain substituent at the aryl ring of the post-treatment reagent. First-principle calculation and single-crystal X-ray diffraction results reveal that weak intermolecular interactions between bulky PMA cations and relatively low cation-halide hydrogen bonding strength are crucial in forming the well-defined 2D phase. The (PMA)(2)PbCl(4) forms improved type-I energy level alignment with the WBG perovskite, reducing the electron recombination at the perovskite/hole-transport-layer interface. Applying this strategy in fabricating semi-transparent WBG perovskite solar cells (indium tin oxide as the back electrode), the V(OC) deficits can be reduced to 0.49 V, comparable with the reported state-of-the-art WBG perovskite solar cells using metal electrodes. Consequently, we obtain hysteresis-free 18.60%-efficient WBG perovskite solar cells with a high V(OC) of 1.23 V. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-023-01090-w. Springer Nature Singapore 2023-04-30 /pmc/articles/PMC10149431/ /pubmed/37121964 http://dx.doi.org/10.1007/s40820-023-01090-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Yang, Liu
Jin, Yongbin
Fang, Zheng
Zhang, Jinyan
Nan, Ziang
Zheng, Lingfang
Zhuang, Huihu
Zeng, Qinghua
Liu, Kaikai
Deng, Bingru
Feng, Huiping
Luo, Yujie
Tian, Chengbo
Cui, Changcai
Xie, Liqiang
Xu, Xipeng
Wei, Zhanhua
Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
title Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
title_full Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
title_fullStr Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
title_full_unstemmed Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
title_short Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
title_sort efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2d-perovskite passivation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149431/
https://www.ncbi.nlm.nih.gov/pubmed/37121964
http://dx.doi.org/10.1007/s40820-023-01090-w
work_keys_str_mv AT yangliu efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT jinyongbin efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT fangzheng efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT zhangjinyan efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT nanziang efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT zhenglingfang efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT zhuanghuihu efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT zengqinghua efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT liukaikai efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT dengbingru efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT fenghuiping efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT luoyujie efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT tianchengbo efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT cuichangcai efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT xieliqiang efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT xuxipeng efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation
AT weizhanhua efficientsemitransparentwidebandgapperovskitesolarcellsenabledbypurechloride2dperovskitepassivation