Cargando…

Interface Engineering of Fe(7)S(8)/FeS(2) Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries

Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics, improving electronic conductivity, and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage. Herein, the iron sulfide-based het...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Penghao, Yang, Jian, Wang, Chengyin, Wang, Tianyi, Gao, Hong, Wang, Guoxiu, Li, Jiabao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149539/
https://www.ncbi.nlm.nih.gov/pubmed/37121953
http://dx.doi.org/10.1007/s40820-023-01082-w
_version_ 1785035178142334976
author Song, Penghao
Yang, Jian
Wang, Chengyin
Wang, Tianyi
Gao, Hong
Wang, Guoxiu
Li, Jiabao
author_facet Song, Penghao
Yang, Jian
Wang, Chengyin
Wang, Tianyi
Gao, Hong
Wang, Guoxiu
Li, Jiabao
author_sort Song, Penghao
collection PubMed
description Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics, improving electronic conductivity, and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage. Herein, the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes (Fe(7)S(8)/FeS(2)/NCNT) have been prepared through a successive pyrolysis and sulfidation approach. The Fe(7)S(8)/FeS(2)/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g(−1) up to 100 cycles at 1.0 A g(−1) and superior rate capability (273.4 mAh g(−1) at 20.0 A g(−1)) in ester-based electrolyte. Meanwhile, the electrodes also demonstrated long-term cycling stability (466.7 mAh g(−1) after 1,000 cycles at 5.0 A g(−1)) and outstanding rate capability (536.5 mAh g(−1) at 20.0 A g(−1)) in ether-based electrolyte. This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics, high capacitive contribution, and convenient interfacial dynamics in ether-based electrolyte. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-023-01082-w.
format Online
Article
Text
id pubmed-10149539
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Nature Singapore
record_format MEDLINE/PubMed
spelling pubmed-101495392023-05-02 Interface Engineering of Fe(7)S(8)/FeS(2) Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries Song, Penghao Yang, Jian Wang, Chengyin Wang, Tianyi Gao, Hong Wang, Guoxiu Li, Jiabao Nanomicro Lett Article Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics, improving electronic conductivity, and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage. Herein, the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes (Fe(7)S(8)/FeS(2)/NCNT) have been prepared through a successive pyrolysis and sulfidation approach. The Fe(7)S(8)/FeS(2)/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g(−1) up to 100 cycles at 1.0 A g(−1) and superior rate capability (273.4 mAh g(−1) at 20.0 A g(−1)) in ester-based electrolyte. Meanwhile, the electrodes also demonstrated long-term cycling stability (466.7 mAh g(−1) after 1,000 cycles at 5.0 A g(−1)) and outstanding rate capability (536.5 mAh g(−1) at 20.0 A g(−1)) in ether-based electrolyte. This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics, high capacitive contribution, and convenient interfacial dynamics in ether-based electrolyte. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-023-01082-w. Springer Nature Singapore 2023-04-30 /pmc/articles/PMC10149539/ /pubmed/37121953 http://dx.doi.org/10.1007/s40820-023-01082-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Song, Penghao
Yang, Jian
Wang, Chengyin
Wang, Tianyi
Gao, Hong
Wang, Guoxiu
Li, Jiabao
Interface Engineering of Fe(7)S(8)/FeS(2) Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries
title Interface Engineering of Fe(7)S(8)/FeS(2) Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries
title_full Interface Engineering of Fe(7)S(8)/FeS(2) Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries
title_fullStr Interface Engineering of Fe(7)S(8)/FeS(2) Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries
title_full_unstemmed Interface Engineering of Fe(7)S(8)/FeS(2) Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries
title_short Interface Engineering of Fe(7)S(8)/FeS(2) Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries
title_sort interface engineering of fe(7)s(8)/fes(2) heterostructure in situ encapsulated into nitrogen-doped carbon nanotubes for high power sodium-ion batteries
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149539/
https://www.ncbi.nlm.nih.gov/pubmed/37121953
http://dx.doi.org/10.1007/s40820-023-01082-w
work_keys_str_mv AT songpenghao interfaceengineeringoffe7s8fes2heterostructureinsituencapsulatedintonitrogendopedcarbonnanotubesforhighpowersodiumionbatteries
AT yangjian interfaceengineeringoffe7s8fes2heterostructureinsituencapsulatedintonitrogendopedcarbonnanotubesforhighpowersodiumionbatteries
AT wangchengyin interfaceengineeringoffe7s8fes2heterostructureinsituencapsulatedintonitrogendopedcarbonnanotubesforhighpowersodiumionbatteries
AT wangtianyi interfaceengineeringoffe7s8fes2heterostructureinsituencapsulatedintonitrogendopedcarbonnanotubesforhighpowersodiumionbatteries
AT gaohong interfaceengineeringoffe7s8fes2heterostructureinsituencapsulatedintonitrogendopedcarbonnanotubesforhighpowersodiumionbatteries
AT wangguoxiu interfaceengineeringoffe7s8fes2heterostructureinsituencapsulatedintonitrogendopedcarbonnanotubesforhighpowersodiumionbatteries
AT lijiabao interfaceengineeringoffe7s8fes2heterostructureinsituencapsulatedintonitrogendopedcarbonnanotubesforhighpowersodiumionbatteries