Cargando…
A multicenter study of artificial intelligence-aided software for detecting visible clinically significant prostate cancer on mpMRI
BACKGROUND: AI-based software may improve the performance of radiologists when detecting clinically significant prostate cancer (csPCa). This study aims to compare the performance of radiologists in detecting MRI-visible csPCa on MRI with and without AI-based software. MATERIALS AND METHODS: In tota...
Autores principales: | Sun, Zhaonan, Wang, Kexin, Kong, Zixuan, Xing, Zhangli, Chen, Yuntian, Luo, Ning, Yu, Yang, Song, Bin, Wu, Pengsheng, Wang, Xiangpeng, Zhang, Xiaodong, Wang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149551/ https://www.ncbi.nlm.nih.gov/pubmed/37121983 http://dx.doi.org/10.1186/s13244-023-01421-w |
Ejemplares similares
-
Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends
por: Bardis, Michelle D., et al.
Publicado: (2020) -
Differential diagnosis of uncommon prostate diseases: combining mpMRI and clinical information
por: Han, Chao, et al.
Publicado: (2021) -
Role of mpMRI of the prostate in screening for prostate cancer
por: Wallis, Christopher J. D., et al.
Publicado: (2017) -
Mischievous malakoplakia: A potential pitfall of mpMRI of the prostate?
por: Rezaee, Michael E., et al.
Publicado: (2020) -
bpMRI and mpMRI for detecting prostate cancer: A retrospective cohort study
por: Pan, Yongsheng, et al.
Publicado: (2023)