Cargando…

Great Offset Difference Internuclear Selective Transfer

[Image: see text] Carbon–carbon dipolar recoupling sequences are frequently used building blocks in routine magic-angle spinning NMR experiments. While broadband homonuclear first-order dipolar recoupling sequences mainly excite intra-residue correlations, selective methods can detect inter-residue...

Descripción completa

Detalles Bibliográficos
Autores principales: Nimerovsky, Evgeny, Najbauer, Eszter Éva, Becker, Stefan, Andreas, Loren B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150390/
https://www.ncbi.nlm.nih.gov/pubmed/37078685
http://dx.doi.org/10.1021/acs.jpclett.3c00194
Descripción
Sumario:[Image: see text] Carbon–carbon dipolar recoupling sequences are frequently used building blocks in routine magic-angle spinning NMR experiments. While broadband homonuclear first-order dipolar recoupling sequences mainly excite intra-residue correlations, selective methods can detect inter-residue transfers and long-range correlations. Here, we present the great offset difference internuclear selective transfer (GODIST) pulse sequence optimized for selective carbonyl or aliphatic recoupling at fast magic-angle spinning, here, 55 kHz. We observe a 3- to 5-fold increase in intensities compared with broadband RFDR recoupling for perdeuterated microcrystalline SH3 and for the membrane protein influenza A M2 in lipid bilayers. In 3D (H)COCO(N)H and (H)CO(CO)NH spectra, inter-residue carbonyl–carbonyl correlations up to about 5 Å are observed in uniformly (13)C-labeled proteins.