Cargando…
Elucidation of infection asperity of CT scan images of COVID-19 positive cases: A Machine Learning perspective
Owing to the profoundly irresistible nature of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, an enormous number of individuals halt in the line for Computed Tomography (CT) scan assessment, which overburdens the medical practitioners, radiologists, and adversely influen...
Autores principales: | Vinod, Dasari Naga, Prabaharan, S.R.S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150416/ https://www.ncbi.nlm.nih.gov/pubmed/37192886 http://dx.doi.org/10.1016/j.sciaf.2023.e01681 |
Ejemplares similares
-
Fully automated unified prognosis of Covid-19 chest X-ray/CT scan images using Deep Covix-Net model
por: Vinod, Dasari Naga, et al.
Publicado: (2021) -
Data science and the role of Artificial Intelligence in achieving the fast diagnosis of Covid-19
por: Vinod, Dasari Naga, et al.
Publicado: (2020) -
COVID-19-The Role of Artificial Intelligence, Machine Learning, and Deep Learning: A Newfangled
por: Vinod, Dasari Naga, et al.
Publicado: (2023) -
International Conference on NextGen Electronic Technologies
por: Prabaharan, SRS, et al.
Publicado: (2017) -
Brain Hemorrhage Classification in CT Scan Images Using Minimalist Machine Learning
por: Solorio-Ramírez, José-Luis, et al.
Publicado: (2021)