Cargando…
Network experiment designs for inferring causal effects under interference
Current approaches to A/B testing in networks focus on limiting interference, the concern that treatment effects can “spill over” from treatment nodes to control nodes and lead to biased causal effect estimation. In the presence of interference, two main types of causal effects are direct treatment...
Autores principales: | Fatemi, Zahra, Zheleva, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150447/ https://www.ncbi.nlm.nih.gov/pubmed/37139171 http://dx.doi.org/10.3389/fdata.2023.1128649 |
Ejemplares similares
-
Causal Inference in the Presence of Interference in Sponsored Search Advertising
por: Nabi, Razieh, et al.
Publicado: (2022) -
GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments
por: Wang, Michael, et al.
Publicado: (2021) -
Significant EHR Feature-Driven T2D Inference: Predictive Machine Learning and Networks
por: Preo, Nicolo', et al.
Publicado: (2019) -
Editorial: Bayesian Inference and AI
por: Tang, Niansheng, et al.
Publicado: (2022) -
Causal Learning From Predictive Modeling for Observational Data
por: Ramanan, Nandini, et al.
Publicado: (2020)