Cargando…
DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection
Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequenc...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150536/ https://www.ncbi.nlm.nih.gov/pubmed/37121998 http://dx.doi.org/10.1186/s13059-023-02920-1 |
_version_ | 1785035379213074432 |
---|---|
author | Christensen, Mikkel H. Drue, Simon O. Rasmussen, Mads H. Frydendahl, Amanda Lyskjær, Iben Demuth, Christina Nors, Jesper Gotschalck, Kåre A. Iversen, Lene H. Andersen, Claus L. Pedersen, Jakob Skou |
author_facet | Christensen, Mikkel H. Drue, Simon O. Rasmussen, Mads H. Frydendahl, Amanda Lyskjær, Iben Demuth, Christina Nors, Jesper Gotschalck, Kåre A. Iversen, Lene H. Andersen, Claus L. Pedersen, Jakob Skou |
author_sort | Christensen, Mikkel H. |
collection | PubMed |
description | Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we develop statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). For evaluation, we generate deep targeted NGS data of matching tumor and plasma DNA from 85 colorectal cancer patients. The DREAMS approach performs better than state-of-the-art methods for variant calling and cancer detection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02920-1. |
format | Online Article Text |
id | pubmed-10150536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-101505362023-05-02 DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection Christensen, Mikkel H. Drue, Simon O. Rasmussen, Mads H. Frydendahl, Amanda Lyskjær, Iben Demuth, Christina Nors, Jesper Gotschalck, Kåre A. Iversen, Lene H. Andersen, Claus L. Pedersen, Jakob Skou Genome Biol Method Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we develop statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). For evaluation, we generate deep targeted NGS data of matching tumor and plasma DNA from 85 colorectal cancer patients. The DREAMS approach performs better than state-of-the-art methods for variant calling and cancer detection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02920-1. BioMed Central 2023-04-30 /pmc/articles/PMC10150536/ /pubmed/37121998 http://dx.doi.org/10.1186/s13059-023-02920-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Method Christensen, Mikkel H. Drue, Simon O. Rasmussen, Mads H. Frydendahl, Amanda Lyskjær, Iben Demuth, Christina Nors, Jesper Gotschalck, Kåre A. Iversen, Lene H. Andersen, Claus L. Pedersen, Jakob Skou DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection |
title | DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection |
title_full | DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection |
title_fullStr | DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection |
title_full_unstemmed | DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection |
title_short | DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection |
title_sort | dreams: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor dna detection |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150536/ https://www.ncbi.nlm.nih.gov/pubmed/37121998 http://dx.doi.org/10.1186/s13059-023-02920-1 |
work_keys_str_mv | AT christensenmikkelh dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT druesimono dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT rasmussenmadsh dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT frydendahlamanda dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT lyskjæriben dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT demuthchristina dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT norsjesper dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT gotschalckkarea dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT iversenleneh dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT andersenclausl dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection AT pedersenjakobskou dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection |