Cargando…

DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection

Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Christensen, Mikkel H., Drue, Simon O., Rasmussen, Mads H., Frydendahl, Amanda, Lyskjær, Iben, Demuth, Christina, Nors, Jesper, Gotschalck, Kåre A., Iversen, Lene H., Andersen, Claus L., Pedersen, Jakob Skou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150536/
https://www.ncbi.nlm.nih.gov/pubmed/37121998
http://dx.doi.org/10.1186/s13059-023-02920-1
_version_ 1785035379213074432
author Christensen, Mikkel H.
Drue, Simon O.
Rasmussen, Mads H.
Frydendahl, Amanda
Lyskjær, Iben
Demuth, Christina
Nors, Jesper
Gotschalck, Kåre A.
Iversen, Lene H.
Andersen, Claus L.
Pedersen, Jakob Skou
author_facet Christensen, Mikkel H.
Drue, Simon O.
Rasmussen, Mads H.
Frydendahl, Amanda
Lyskjær, Iben
Demuth, Christina
Nors, Jesper
Gotschalck, Kåre A.
Iversen, Lene H.
Andersen, Claus L.
Pedersen, Jakob Skou
author_sort Christensen, Mikkel H.
collection PubMed
description Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we develop statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). For evaluation, we generate deep targeted NGS data of matching tumor and plasma DNA from 85 colorectal cancer patients. The DREAMS approach performs better than state-of-the-art methods for variant calling and cancer detection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02920-1.
format Online
Article
Text
id pubmed-10150536
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-101505362023-05-02 DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection Christensen, Mikkel H. Drue, Simon O. Rasmussen, Mads H. Frydendahl, Amanda Lyskjær, Iben Demuth, Christina Nors, Jesper Gotschalck, Kåre A. Iversen, Lene H. Andersen, Claus L. Pedersen, Jakob Skou Genome Biol Method Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we develop statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). For evaluation, we generate deep targeted NGS data of matching tumor and plasma DNA from 85 colorectal cancer patients. The DREAMS approach performs better than state-of-the-art methods for variant calling and cancer detection. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-02920-1. BioMed Central 2023-04-30 /pmc/articles/PMC10150536/ /pubmed/37121998 http://dx.doi.org/10.1186/s13059-023-02920-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Christensen, Mikkel H.
Drue, Simon O.
Rasmussen, Mads H.
Frydendahl, Amanda
Lyskjær, Iben
Demuth, Christina
Nors, Jesper
Gotschalck, Kåre A.
Iversen, Lene H.
Andersen, Claus L.
Pedersen, Jakob Skou
DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection
title DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection
title_full DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection
title_fullStr DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection
title_full_unstemmed DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection
title_short DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection
title_sort dreams: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor dna detection
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150536/
https://www.ncbi.nlm.nih.gov/pubmed/37121998
http://dx.doi.org/10.1186/s13059-023-02920-1
work_keys_str_mv AT christensenmikkelh dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT druesimono dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT rasmussenmadsh dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT frydendahlamanda dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT lyskjæriben dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT demuthchristina dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT norsjesper dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT gotschalckkarea dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT iversenleneh dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT andersenclausl dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection
AT pedersenjakobskou dreamsdeepreadlevelerrormodelforsequencingdataappliedtolowfrequencyvariantcallingandcirculatingtumordnadetection