Cargando…
Multi-omics fusion analysis models with machine learning predict survival of HER2-negative metastatic breast cancer: a multicenter prospective observational study
Autores principales: | Wang, Jiani, Liu, Yuwei, Zhang, Renzhi, Liu, Zhenyu, Yi, Zongbi, Guan, Xiuwen, Zhao, Xinming, Jiang, Jingying, Tian, Jie, Ma, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150865/ https://www.ncbi.nlm.nih.gov/pubmed/37027394 http://dx.doi.org/10.1097/CM9.0000000000002625 |
Ejemplares similares
-
Epithelial-Mesenchymal-Transition-Like Circulating Tumor Cell-Associated White Blood Cell Clusters as a Prognostic Biomarker in HR-Positive/HER2-Negative Metastatic Breast Cancer
por: Guan, Xiuwen, et al.
Publicado: (2021) -
Gut Microbiota Profiling in Patients With HER2-Negative Metastatic Breast Cancer Receiving Metronomic Chemotherapy of Capecitabine Compared to Those Under Conventional Dosage
por: Guan, Xiuwen, et al.
Publicado: (2020) -
Molecular landscape of
TP53
mutations in breast cancer and their utility for predicting the response to HER‐targeted therapy in HER2 amplification‐positive and HER2 mutation‐positive amplification‐negative patients
por: Liu, Binliang, et al.
Publicado: (2022) -
Antibody-drug conjugates in HER2-positive breast cancer
por: Li, Lixi, et al.
Publicado: (2022) -
Molecular landscape and efficacy of HER2-targeted therapy in patients with HER2-mutated metastatic breast cancer
por: Yi, Zongbi, et al.
Publicado: (2020)