Cargando…
Resource theory of quantum scrambling
Quantum chaos has become a cornerstone of physics through its many applications. One trademark of quantum chaotic systems is the spread of local quantum information, which physicists call scrambling. In this work, we introduce a mathematical definition of scrambling and a resource theory to measure...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151511/ https://www.ncbi.nlm.nih.gov/pubmed/37071685 http://dx.doi.org/10.1073/pnas.2217031120 |
Sumario: | Quantum chaos has become a cornerstone of physics through its many applications. One trademark of quantum chaotic systems is the spread of local quantum information, which physicists call scrambling. In this work, we introduce a mathematical definition of scrambling and a resource theory to measure it. We also describe two applications of this theory. First, we use our resource theory to provide a bound on magic, a potential source of quantum computational advantage, which can be efficiently measured in experiment. Second, we also show that scrambling resources bound the success of Yoshida’s black hole decoding protocol. |
---|