Cargando…
Digitizing chemical discovery with a Bayesian explorer for interpreting reactivity data
Interpreting the outcome of chemistry experiments consistently is slow and frequently introduces unwanted hidden bias. This difficulty limits the scale of collectable data and often leads to exclusion of negative results, which severely limits progress in the field. What is needed is a way to standa...
Autores principales: | M. Mehr, S. Hessam, Caramelli, Dario, Cronin, Leroy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151610/ https://www.ncbi.nlm.nih.gov/pubmed/37068251 http://dx.doi.org/10.1073/pnas.2220045120 |
Ejemplares similares
-
Discovering New Chemistry with an Autonomous Robotic
Platform Driven by a Reactivity-Seeking Neural Network
por: Caramelli, Dario, et al.
Publicado: (2021) -
Exploring and mapping chemical space with molecular assembly
trees
por: Liu, Yu, et al.
Publicado: (2021) -
An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials
por: Jiang, Yibin, et al.
Publicado: (2022) -
Intuition-Enabled Machine Learning Beats the Competition
When Joint Human-Robot Teams Perform Inorganic Chemical Experiments
por: Duros, Vasilios, et al.
Publicado: (2019) -
Networking chemical robots for reaction multitasking
por: Caramelli, Dario, et al.
Publicado: (2018)