Cargando…

A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis

Arabidopsis plants exposed to the antibiotic kanamycin (Kan) display altered metal homeostasis. Further, mutation of the WBC19 gene leads to increased sensitivity to kanamycin and changes in iron (Fe) and zinc (Zn) uptake. Here we propose a model that explain this surprising relationship between met...

Descripción completa

Detalles Bibliográficos
Autores principales: Mentewab, Ayalew, Mwaura, Bethany W., Kumbale, Carla M., Rono, Catherine, Torres-Patarroyo, Natalia, Vlčko, Tomáš, Ohnoutková, Ludmila, Voit, Eberhard O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151686/
https://www.ncbi.nlm.nih.gov/pubmed/37143881
http://dx.doi.org/10.3389/fpls.2023.1147598
_version_ 1785035592163131392
author Mentewab, Ayalew
Mwaura, Bethany W.
Kumbale, Carla M.
Rono, Catherine
Torres-Patarroyo, Natalia
Vlčko, Tomáš
Ohnoutková, Ludmila
Voit, Eberhard O.
author_facet Mentewab, Ayalew
Mwaura, Bethany W.
Kumbale, Carla M.
Rono, Catherine
Torres-Patarroyo, Natalia
Vlčko, Tomáš
Ohnoutková, Ludmila
Voit, Eberhard O.
author_sort Mentewab, Ayalew
collection PubMed
description Arabidopsis plants exposed to the antibiotic kanamycin (Kan) display altered metal homeostasis. Further, mutation of the WBC19 gene leads to increased sensitivity to kanamycin and changes in iron (Fe) and zinc (Zn) uptake. Here we propose a model that explain this surprising relationship between metal uptake and exposure to Kan. We first use knowledge about the metal uptake phenomenon to devise a transport and interaction diagram on which we base the construction of a dynamic compartment model. The model has three pathways for loading Fe and its chelators into the xylem. One pathway, involving an unknown transporter, loads Fe as a chelate with citrate (Ci) into the xylem. This transport step can be significantly inhibited by Kan. In parallel, FRD3 transports Ci into the xylem where it can chelate with free Fe. A third critical pathway involves WBC19, which transports metal-nicotianamine (NA), mainly as Fe-NA chelate, and possibly NA itself. To permit quantitative exploration and analysis, we use experimental time series data to parameterize this explanatory and predictive model. Its numerical analysis allows us to predict responses by a double mutant and explain the observed differences between data from wildtype, mutants and Kan inhibition experiments. Importantly, the model provides novel insights into metal homeostasis by permitting the reverse-engineering of mechanistic strategies with which the plant counteracts the effects of mutations and of the inhibition of iron transport by kanamycin.
format Online
Article
Text
id pubmed-10151686
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-101516862023-05-03 A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis Mentewab, Ayalew Mwaura, Bethany W. Kumbale, Carla M. Rono, Catherine Torres-Patarroyo, Natalia Vlčko, Tomáš Ohnoutková, Ludmila Voit, Eberhard O. Front Plant Sci Plant Science Arabidopsis plants exposed to the antibiotic kanamycin (Kan) display altered metal homeostasis. Further, mutation of the WBC19 gene leads to increased sensitivity to kanamycin and changes in iron (Fe) and zinc (Zn) uptake. Here we propose a model that explain this surprising relationship between metal uptake and exposure to Kan. We first use knowledge about the metal uptake phenomenon to devise a transport and interaction diagram on which we base the construction of a dynamic compartment model. The model has three pathways for loading Fe and its chelators into the xylem. One pathway, involving an unknown transporter, loads Fe as a chelate with citrate (Ci) into the xylem. This transport step can be significantly inhibited by Kan. In parallel, FRD3 transports Ci into the xylem where it can chelate with free Fe. A third critical pathway involves WBC19, which transports metal-nicotianamine (NA), mainly as Fe-NA chelate, and possibly NA itself. To permit quantitative exploration and analysis, we use experimental time series data to parameterize this explanatory and predictive model. Its numerical analysis allows us to predict responses by a double mutant and explain the observed differences between data from wildtype, mutants and Kan inhibition experiments. Importantly, the model provides novel insights into metal homeostasis by permitting the reverse-engineering of mechanistic strategies with which the plant counteracts the effects of mutations and of the inhibition of iron transport by kanamycin. Frontiers Media S.A. 2023-04-18 /pmc/articles/PMC10151686/ /pubmed/37143881 http://dx.doi.org/10.3389/fpls.2023.1147598 Text en Copyright © 2023 Mentewab, Mwaura, Kumbale, Rono, Torres-Patarroyo, Vlčko, Ohnoutková and Voit https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Mentewab, Ayalew
Mwaura, Bethany W.
Kumbale, Carla M.
Rono, Catherine
Torres-Patarroyo, Natalia
Vlčko, Tomáš
Ohnoutková, Ludmila
Voit, Eberhard O.
A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis
title A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis
title_full A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis
title_fullStr A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis
title_full_unstemmed A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis
title_short A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis
title_sort dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in arabidopsis
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151686/
https://www.ncbi.nlm.nih.gov/pubmed/37143881
http://dx.doi.org/10.3389/fpls.2023.1147598
work_keys_str_mv AT mentewabayalew adynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT mwaurabethanyw adynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT kumbalecarlam adynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT ronocatherine adynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT torrespatarroyonatalia adynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT vlckotomas adynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT ohnoutkovaludmila adynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT voiteberhardo adynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT mentewabayalew dynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT mwaurabethanyw dynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT kumbalecarlam dynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT ronocatherine dynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT torrespatarroyonatalia dynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT vlckotomas dynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT ohnoutkovaludmila dynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis
AT voiteberhardo dynamiccompartmentmodelforxylemloadingandlongdistancetransportofironexplainstheeffectofkanamycinonmetaluptakeinarabidopsis