Cargando…

Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model

This paper presents a reconfigurable digital implementation of an event-based binaural cochlear system on a Field Programmable Gate Array (FPGA). It consists of a pair of the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR-FAC) cochlea models and leaky integrate-and-fire (LIF) neu...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Ying, Perera, Samalika, Bethi, Yeshwanth, Afshar, Saeed, van Schaik, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151790/
https://www.ncbi.nlm.nih.gov/pubmed/37144092
http://dx.doi.org/10.3389/fnins.2023.1125210
Descripción
Sumario:This paper presents a reconfigurable digital implementation of an event-based binaural cochlear system on a Field Programmable Gate Array (FPGA). It consists of a pair of the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR-FAC) cochlea models and leaky integrate-and-fire (LIF) neurons. Additionally, we propose an event-driven SpectroTemporal Receptive Field (STRF) Feature Extraction using Adaptive Selection Thresholds (FEAST). It is tested on the TIDIGTIS benchmark and compared with current event-based auditory signal processing approaches and neural networks.