Cargando…
Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model
This paper presents a reconfigurable digital implementation of an event-based binaural cochlear system on a Field Programmable Gate Array (FPGA). It consists of a pair of the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR-FAC) cochlea models and leaky integrate-and-fire (LIF) neu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151790/ https://www.ncbi.nlm.nih.gov/pubmed/37144092 http://dx.doi.org/10.3389/fnins.2023.1125210 |
_version_ | 1785035616615923712 |
---|---|
author | Xu, Ying Perera, Samalika Bethi, Yeshwanth Afshar, Saeed van Schaik, André |
author_facet | Xu, Ying Perera, Samalika Bethi, Yeshwanth Afshar, Saeed van Schaik, André |
author_sort | Xu, Ying |
collection | PubMed |
description | This paper presents a reconfigurable digital implementation of an event-based binaural cochlear system on a Field Programmable Gate Array (FPGA). It consists of a pair of the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR-FAC) cochlea models and leaky integrate-and-fire (LIF) neurons. Additionally, we propose an event-driven SpectroTemporal Receptive Field (STRF) Feature Extraction using Adaptive Selection Thresholds (FEAST). It is tested on the TIDIGTIS benchmark and compared with current event-based auditory signal processing approaches and neural networks. |
format | Online Article Text |
id | pubmed-10151790 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-101517902023-05-03 Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model Xu, Ying Perera, Samalika Bethi, Yeshwanth Afshar, Saeed van Schaik, André Front Neurosci Neuroscience This paper presents a reconfigurable digital implementation of an event-based binaural cochlear system on a Field Programmable Gate Array (FPGA). It consists of a pair of the Cascade of Asymmetric Resonators with Fast Acting Compression (CAR-FAC) cochlea models and leaky integrate-and-fire (LIF) neurons. Additionally, we propose an event-driven SpectroTemporal Receptive Field (STRF) Feature Extraction using Adaptive Selection Thresholds (FEAST). It is tested on the TIDIGTIS benchmark and compared with current event-based auditory signal processing approaches and neural networks. Frontiers Media S.A. 2023-04-18 /pmc/articles/PMC10151790/ /pubmed/37144092 http://dx.doi.org/10.3389/fnins.2023.1125210 Text en Copyright © 2023 Xu, Perera, Bethi, Afshar and van Schaik. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Xu, Ying Perera, Samalika Bethi, Yeshwanth Afshar, Saeed van Schaik, André Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model |
title | Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model |
title_full | Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model |
title_fullStr | Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model |
title_full_unstemmed | Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model |
title_short | Event-driven spectrotemporal feature extraction and classification using a silicon cochlea model |
title_sort | event-driven spectrotemporal feature extraction and classification using a silicon cochlea model |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151790/ https://www.ncbi.nlm.nih.gov/pubmed/37144092 http://dx.doi.org/10.3389/fnins.2023.1125210 |
work_keys_str_mv | AT xuying eventdrivenspectrotemporalfeatureextractionandclassificationusingasiliconcochleamodel AT pererasamalika eventdrivenspectrotemporalfeatureextractionandclassificationusingasiliconcochleamodel AT bethiyeshwanth eventdrivenspectrotemporalfeatureextractionandclassificationusingasiliconcochleamodel AT afsharsaeed eventdrivenspectrotemporalfeatureextractionandclassificationusingasiliconcochleamodel AT vanschaikandre eventdrivenspectrotemporalfeatureextractionandclassificationusingasiliconcochleamodel |