Cargando…
Multilevel comparison of deep learning models for function quantification in cardiovascular magnetic resonance: On the redundancy of architectural variations
BACKGROUND: Cardiac function quantification in cardiovascular magnetic resonance requires precise contouring of the heart chambers. This time-consuming task is increasingly being addressed by a plethora of ever more complex deep learning methods. However, only a small fraction of these have made the...
Autores principales: | Ammann, Clemens, Hadler, Thomas, Gröschel, Jan, Kolbitsch, Christoph, Schulz-Menger, Jeanette |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151814/ https://www.ncbi.nlm.nih.gov/pubmed/37144061 http://dx.doi.org/10.3389/fcvm.2023.1118499 |
Ejemplares similares
-
Introduction of Lazy Luna an automatic software-driven multilevel comparison of ventricular function quantification in cardiovascular magnetic resonance imaging
por: Hadler, Thomas, et al.
Publicado: (2022) -
Different Impacts on the Heart After COVID-19 Infection and Vaccination: Insights From Cardiovascular Magnetic Resonance
por: Gröschel, Jan, et al.
Publicado: (2022) -
Introduction of a cascaded segmentation pipeline for parametric T1 mapping in cardiovascular magnetic resonance to improve segmentation performance
por: Viezzer, Darian, et al.
Publicado: (2023) -
Multi-site comparison of parametric T1 and T2 mapping: healthy travelling volunteers in the Berlin research network for cardiovascular magnetic resonance (BER-CMR)
por: Gröschel, Jan, et al.
Publicado: (2023) -
Changes of aortic hemodynamics after aortic valve replacement—A four dimensional flow cardiovascular magnetic resonance follow up study
por: Wiesemann, Stephanie, et al.
Publicado: (2023)