Cargando…
Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine
Acute myeloid leukemia (AML) is a highly heterogeneous cancer of the hematopoietic system with no cure for most patients. In addition to chemotherapy, treatment options for AML include recently approved therapies that target proteins with roles in AML pathobiology, such as FLT3, BLC2, and IDH1/2. Ho...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152134/ https://www.ncbi.nlm.nih.gov/pubmed/36805445 http://dx.doi.org/10.1016/j.mcpro.2023.100517 |
_version_ | 1785035688706572288 |
---|---|
author | Casado, Pedro Cutillas, Pedro R. |
author_facet | Casado, Pedro Cutillas, Pedro R. |
author_sort | Casado, Pedro |
collection | PubMed |
description | Acute myeloid leukemia (AML) is a highly heterogeneous cancer of the hematopoietic system with no cure for most patients. In addition to chemotherapy, treatment options for AML include recently approved therapies that target proteins with roles in AML pathobiology, such as FLT3, BLC2, and IDH1/2. However, due to disease complexity, these therapies produce very diverse responses, and survival rates are still low. Thus, despite considerable advances, there remains a need for therapies that target different aspects of leukemic biology and for associated biomarkers that define patient populations likely to respond to each available therapy. To meet this need, drugs that target different AML vulnerabilities are currently in advanced stages of clinical development. Here, we review proteomics and phosphoproteomics studies that aimed to provide insights into AML biology and clinical disease heterogeneity not attainable with genomic approaches. To place the discussion in context, we first provide an overview of genetic and clinical aspects of the disease, followed by a summary of proteins targeted by compounds that have been approved or are under clinical trials for AML treatment and, if available, the biomarkers that predict responses. We then discuss proteomics and phosphoproteomics studies that provided insights into AML pathogenesis, from which potential biomarkers and drug targets were identified, and studies that aimed to rationalize the use of synergistic drug combinations. When considered as a whole, the evidence summarized here suggests that proteomics and phosphoproteomics approaches can play a crucial role in the development and implementation of precision medicine for AML patients. |
format | Online Article Text |
id | pubmed-10152134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-101521342023-05-03 Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine Casado, Pedro Cutillas, Pedro R. Mol Cell Proteomics Review Acute myeloid leukemia (AML) is a highly heterogeneous cancer of the hematopoietic system with no cure for most patients. In addition to chemotherapy, treatment options for AML include recently approved therapies that target proteins with roles in AML pathobiology, such as FLT3, BLC2, and IDH1/2. However, due to disease complexity, these therapies produce very diverse responses, and survival rates are still low. Thus, despite considerable advances, there remains a need for therapies that target different aspects of leukemic biology and for associated biomarkers that define patient populations likely to respond to each available therapy. To meet this need, drugs that target different AML vulnerabilities are currently in advanced stages of clinical development. Here, we review proteomics and phosphoproteomics studies that aimed to provide insights into AML biology and clinical disease heterogeneity not attainable with genomic approaches. To place the discussion in context, we first provide an overview of genetic and clinical aspects of the disease, followed by a summary of proteins targeted by compounds that have been approved or are under clinical trials for AML treatment and, if available, the biomarkers that predict responses. We then discuss proteomics and phosphoproteomics studies that provided insights into AML pathogenesis, from which potential biomarkers and drug targets were identified, and studies that aimed to rationalize the use of synergistic drug combinations. When considered as a whole, the evidence summarized here suggests that proteomics and phosphoproteomics approaches can play a crucial role in the development and implementation of precision medicine for AML patients. American Society for Biochemistry and Molecular Biology 2023-02-18 /pmc/articles/PMC10152134/ /pubmed/36805445 http://dx.doi.org/10.1016/j.mcpro.2023.100517 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Casado, Pedro Cutillas, Pedro R. Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine |
title | Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine |
title_full | Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine |
title_fullStr | Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine |
title_full_unstemmed | Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine |
title_short | Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine |
title_sort | proteomic characterization of acute myeloid leukemia for precision medicine |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152134/ https://www.ncbi.nlm.nih.gov/pubmed/36805445 http://dx.doi.org/10.1016/j.mcpro.2023.100517 |
work_keys_str_mv | AT casadopedro proteomiccharacterizationofacutemyeloidleukemiaforprecisionmedicine AT cutillaspedror proteomiccharacterizationofacutemyeloidleukemiaforprecisionmedicine |