Cargando…
How proton transfer impacts hachimoji DNA
Hachimoji DNA is a synthetic nucleic acid extension of DNA, formed by an additional four bases, Z, P, S, and B, that can encode information and sustain Darwinian evolution. In this paper, we aim to look into the properties of hachimoji DNA and investigate the probability of proton transfer between t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152326/ https://www.ncbi.nlm.nih.gov/pubmed/37143915 http://dx.doi.org/10.1039/d3ra00983a |
_version_ | 1785035726598963200 |
---|---|
author | Warman, Harry Slocombe, Louie Sacchi, Marco |
author_facet | Warman, Harry Slocombe, Louie Sacchi, Marco |
author_sort | Warman, Harry |
collection | PubMed |
description | Hachimoji DNA is a synthetic nucleic acid extension of DNA, formed by an additional four bases, Z, P, S, and B, that can encode information and sustain Darwinian evolution. In this paper, we aim to look into the properties of hachimoji DNA and investigate the probability of proton transfer between the bases, resulting in base mismatch under replication. First, we present a proton transfer mechanism for hachimoji DNA, analogous to the one presented by Löwdin years prior. Then, we use density functional theory to calculate proton transfer rates, tunnelling factors and the kinetic isotope effect in hachimoji DNA. We determined that the reaction barriers are sufficiently low that proton transfer is likely to occur even at biological temperatures. Furthermore, the rates of proton transfer of hachimoji DNA are much faster than in Watson–Crick DNA due to the barrier for Z–P and S–B being 30% lower than in G–C and A–T. Suggesting that proton transfer occurs more frequently in hachimoji DNA than canonical DNA, potentially leading to a higher mutation rate. |
format | Online Article Text |
id | pubmed-10152326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-101523262023-05-03 How proton transfer impacts hachimoji DNA Warman, Harry Slocombe, Louie Sacchi, Marco RSC Adv Chemistry Hachimoji DNA is a synthetic nucleic acid extension of DNA, formed by an additional four bases, Z, P, S, and B, that can encode information and sustain Darwinian evolution. In this paper, we aim to look into the properties of hachimoji DNA and investigate the probability of proton transfer between the bases, resulting in base mismatch under replication. First, we present a proton transfer mechanism for hachimoji DNA, analogous to the one presented by Löwdin years prior. Then, we use density functional theory to calculate proton transfer rates, tunnelling factors and the kinetic isotope effect in hachimoji DNA. We determined that the reaction barriers are sufficiently low that proton transfer is likely to occur even at biological temperatures. Furthermore, the rates of proton transfer of hachimoji DNA are much faster than in Watson–Crick DNA due to the barrier for Z–P and S–B being 30% lower than in G–C and A–T. Suggesting that proton transfer occurs more frequently in hachimoji DNA than canonical DNA, potentially leading to a higher mutation rate. The Royal Society of Chemistry 2023-05-02 /pmc/articles/PMC10152326/ /pubmed/37143915 http://dx.doi.org/10.1039/d3ra00983a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Warman, Harry Slocombe, Louie Sacchi, Marco How proton transfer impacts hachimoji DNA |
title | How proton transfer impacts hachimoji DNA |
title_full | How proton transfer impacts hachimoji DNA |
title_fullStr | How proton transfer impacts hachimoji DNA |
title_full_unstemmed | How proton transfer impacts hachimoji DNA |
title_short | How proton transfer impacts hachimoji DNA |
title_sort | how proton transfer impacts hachimoji dna |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152326/ https://www.ncbi.nlm.nih.gov/pubmed/37143915 http://dx.doi.org/10.1039/d3ra00983a |
work_keys_str_mv | AT warmanharry howprotontransferimpactshachimojidna AT slocombelouie howprotontransferimpactshachimojidna AT sacchimarco howprotontransferimpactshachimojidna |