Cargando…

Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study

BACKGROUND: Heart failure (HF) is highly prevalent in the United States. Approximately one-third to one-half of HF cases are categorized as HF with reduced ejection fraction (HFrEF). Patients with HFrEF are at risk of worsening HF, have a high risk of adverse outcomes, and experience higher health c...

Descripción completa

Detalles Bibliográficos
Autores principales: Ru, Boshu, Tan, Xi, Liu, Yu, Kannapur, Kartik, Ramanan, Dheepan, Kessler, Garin, Lautsch, Dominik, Fonarow, Gregg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152335/
https://www.ncbi.nlm.nih.gov/pubmed/37067873
http://dx.doi.org/10.2196/41775
_version_ 1785035728789438464
author Ru, Boshu
Tan, Xi
Liu, Yu
Kannapur, Kartik
Ramanan, Dheepan
Kessler, Garin
Lautsch, Dominik
Fonarow, Gregg
author_facet Ru, Boshu
Tan, Xi
Liu, Yu
Kannapur, Kartik
Ramanan, Dheepan
Kessler, Garin
Lautsch, Dominik
Fonarow, Gregg
author_sort Ru, Boshu
collection PubMed
description BACKGROUND: Heart failure (HF) is highly prevalent in the United States. Approximately one-third to one-half of HF cases are categorized as HF with reduced ejection fraction (HFrEF). Patients with HFrEF are at risk of worsening HF, have a high risk of adverse outcomes, and experience higher health care use and costs. Therefore, it is crucial to identify patients with HFrEF who are at high risk of subsequent events after HF hospitalization. OBJECTIVE: Machine learning (ML) has been used to predict HF-related outcomes. The objective of this study was to compare different ML prediction models and feature construction methods to predict 30-, 90-, and 365-day hospital readmissions and worsening HF events (WHFEs). METHODS: We used the Veradigm PINNACLE outpatient registry linked to Symphony Health’s Integrated Dataverse data from July 1, 2013, to September 30, 2017. Adults with a confirmed diagnosis of HFrEF and HF-related hospitalization were included. WHFEs were defined as HF-related hospitalizations or outpatient intravenous diuretic use within 1 year of the first HF hospitalization. We used different approaches to construct ML features from clinical codes, including frequencies of clinical classification software (CCS) categories, Bidirectional Encoder Representations From Transformers (BERT) trained with CCS sequences (BERT + CCS), BERT trained on raw clinical codes (BERT + raw), and prespecified features based on clinical knowledge. A multilayer perceptron neural network, extreme gradient boosting (XGBoost), random forest, and logistic regression prediction models were applied and compared. RESULTS: A total of 30,687 adult patients with HFrEF were included in the analysis; 11.41% (3184/27,917) of adults experienced a hospital readmission within 30 days of their first HF hospitalization, and nearly half (9231/21,562, 42.81%) of the patients experienced at least 1 WHFE within 1 year after HF hospitalization. The prediction models and feature combinations with the best area under the receiver operating characteristic curve (AUC) for each outcome were XGBoost with CCS frequency (AUC=0.595) for 30-day readmission, random forest with CCS frequency (AUC=0.630) for 90-day readmission, XGBoost with CCS frequency (AUC=0.649) for 365-day readmission, and XGBoost with CCS frequency (AUC=0.640) for WHFEs. Our ML models could discriminate between readmission and WHFE among patients with HFrEF. Our model performance was mediocre, especially for the 30-day readmission events, most likely owing to limitations of the data, including an imbalance between positive and negative cases and high missing rates of many clinical variables and outcome definitions. CONCLUSIONS: We predicted readmissions and WHFEs after HF hospitalizations in patients with HFrEF. Features identified by data-driven approaches may be comparable with those identified by clinical domain knowledge. Future work may be warranted to validate and improve the models using more longitudinal electronic health records that are complete, are comprehensive, and have a longer follow-up time.
format Online
Article
Text
id pubmed-10152335
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-101523352023-05-03 Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study Ru, Boshu Tan, Xi Liu, Yu Kannapur, Kartik Ramanan, Dheepan Kessler, Garin Lautsch, Dominik Fonarow, Gregg JMIR Form Res Original Paper BACKGROUND: Heart failure (HF) is highly prevalent in the United States. Approximately one-third to one-half of HF cases are categorized as HF with reduced ejection fraction (HFrEF). Patients with HFrEF are at risk of worsening HF, have a high risk of adverse outcomes, and experience higher health care use and costs. Therefore, it is crucial to identify patients with HFrEF who are at high risk of subsequent events after HF hospitalization. OBJECTIVE: Machine learning (ML) has been used to predict HF-related outcomes. The objective of this study was to compare different ML prediction models and feature construction methods to predict 30-, 90-, and 365-day hospital readmissions and worsening HF events (WHFEs). METHODS: We used the Veradigm PINNACLE outpatient registry linked to Symphony Health’s Integrated Dataverse data from July 1, 2013, to September 30, 2017. Adults with a confirmed diagnosis of HFrEF and HF-related hospitalization were included. WHFEs were defined as HF-related hospitalizations or outpatient intravenous diuretic use within 1 year of the first HF hospitalization. We used different approaches to construct ML features from clinical codes, including frequencies of clinical classification software (CCS) categories, Bidirectional Encoder Representations From Transformers (BERT) trained with CCS sequences (BERT + CCS), BERT trained on raw clinical codes (BERT + raw), and prespecified features based on clinical knowledge. A multilayer perceptron neural network, extreme gradient boosting (XGBoost), random forest, and logistic regression prediction models were applied and compared. RESULTS: A total of 30,687 adult patients with HFrEF were included in the analysis; 11.41% (3184/27,917) of adults experienced a hospital readmission within 30 days of their first HF hospitalization, and nearly half (9231/21,562, 42.81%) of the patients experienced at least 1 WHFE within 1 year after HF hospitalization. The prediction models and feature combinations with the best area under the receiver operating characteristic curve (AUC) for each outcome were XGBoost with CCS frequency (AUC=0.595) for 30-day readmission, random forest with CCS frequency (AUC=0.630) for 90-day readmission, XGBoost with CCS frequency (AUC=0.649) for 365-day readmission, and XGBoost with CCS frequency (AUC=0.640) for WHFEs. Our ML models could discriminate between readmission and WHFE among patients with HFrEF. Our model performance was mediocre, especially for the 30-day readmission events, most likely owing to limitations of the data, including an imbalance between positive and negative cases and high missing rates of many clinical variables and outcome definitions. CONCLUSIONS: We predicted readmissions and WHFEs after HF hospitalizations in patients with HFrEF. Features identified by data-driven approaches may be comparable with those identified by clinical domain knowledge. Future work may be warranted to validate and improve the models using more longitudinal electronic health records that are complete, are comprehensive, and have a longer follow-up time. JMIR Publications 2023-04-17 /pmc/articles/PMC10152335/ /pubmed/37067873 http://dx.doi.org/10.2196/41775 Text en ©Boshu Ru, Xi Tan, Yu Liu, Kartik Kannapur, Dheepan Ramanan, Garin Kessler, Dominik Lautsch, Gregg Fonarow. Originally published in JMIR Formative Research (https://formative.jmir.org), 17.04.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.
spellingShingle Original Paper
Ru, Boshu
Tan, Xi
Liu, Yu
Kannapur, Kartik
Ramanan, Dheepan
Kessler, Garin
Lautsch, Dominik
Fonarow, Gregg
Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study
title Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study
title_full Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study
title_fullStr Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study
title_full_unstemmed Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study
title_short Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study
title_sort comparison of machine learning algorithms for predicting hospital readmissions and worsening heart failure events in patients with heart failure with reduced ejection fraction: modeling study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152335/
https://www.ncbi.nlm.nih.gov/pubmed/37067873
http://dx.doi.org/10.2196/41775
work_keys_str_mv AT ruboshu comparisonofmachinelearningalgorithmsforpredictinghospitalreadmissionsandworseningheartfailureeventsinpatientswithheartfailurewithreducedejectionfractionmodelingstudy
AT tanxi comparisonofmachinelearningalgorithmsforpredictinghospitalreadmissionsandworseningheartfailureeventsinpatientswithheartfailurewithreducedejectionfractionmodelingstudy
AT liuyu comparisonofmachinelearningalgorithmsforpredictinghospitalreadmissionsandworseningheartfailureeventsinpatientswithheartfailurewithreducedejectionfractionmodelingstudy
AT kannapurkartik comparisonofmachinelearningalgorithmsforpredictinghospitalreadmissionsandworseningheartfailureeventsinpatientswithheartfailurewithreducedejectionfractionmodelingstudy
AT ramanandheepan comparisonofmachinelearningalgorithmsforpredictinghospitalreadmissionsandworseningheartfailureeventsinpatientswithheartfailurewithreducedejectionfractionmodelingstudy
AT kesslergarin comparisonofmachinelearningalgorithmsforpredictinghospitalreadmissionsandworseningheartfailureeventsinpatientswithheartfailurewithreducedejectionfractionmodelingstudy
AT lautschdominik comparisonofmachinelearningalgorithmsforpredictinghospitalreadmissionsandworseningheartfailureeventsinpatientswithheartfailurewithreducedejectionfractionmodelingstudy
AT fonarowgregg comparisonofmachinelearningalgorithmsforpredictinghospitalreadmissionsandworseningheartfailureeventsinpatientswithheartfailurewithreducedejectionfractionmodelingstudy