Cargando…
MonoNet: enhancing interpretability in neural networks via monotonic features
MOTIVATION: Being able to interpret and explain the predictions made by a machine learning model is of fundamental importance. Unfortunately, a trade-off between accuracy and interpretability is often observed. As a result, the interest in developing more transparent yet powerful models has grown co...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152389/ https://www.ncbi.nlm.nih.gov/pubmed/37143924 http://dx.doi.org/10.1093/bioadv/vbad016 |
_version_ | 1785035733810020352 |
---|---|
author | Nguyen, An-Phi Moreno, Dana Lea Le-Bel, Nicolas Rodríguez Martínez, María |
author_facet | Nguyen, An-Phi Moreno, Dana Lea Le-Bel, Nicolas Rodríguez Martínez, María |
author_sort | Nguyen, An-Phi |
collection | PubMed |
description | MOTIVATION: Being able to interpret and explain the predictions made by a machine learning model is of fundamental importance. Unfortunately, a trade-off between accuracy and interpretability is often observed. As a result, the interest in developing more transparent yet powerful models has grown considerably over the past few years. Interpretable models are especially needed in high-stake scenarios, such as computational biology and medical informatics, where erroneous or biased models’ predictions can have deleterious consequences for a patient. Furthermore, understanding the inner workings of a model can help increase the trust in the model. RESULTS: We introduce a novel structurally constrained neural network, MonoNet, which is more transparent, while still retaining the same learning capabilities of traditional neural models. MonoNet contains monotonically connected layers that ensure monotonic relationships between (high-level) features and outputs. We show how, by leveraging the monotonic constraint in conjunction with other post hoc strategies, we can interpret our model. To demonstrate our model’s capabilities, we train MonoNet to classify cellular populations in a single-cell proteomic dataset. We also demonstrate MonoNet’s performance in other benchmark datasets in different domains, including non-biological applications (in the Supplementary Material). Our experiments show how our model can achieve good performance, while providing at the same time useful biological insights about the most important biomarkers. We finally carry out an information-theoretical analysis to show how the monotonic constraint actively contributes to the learning process of the model. AVAILABILITY AND IMPLEMENTATION: Code and sample data are available at https://github.com/phineasng/mononet. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. |
format | Online Article Text |
id | pubmed-10152389 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101523892023-05-03 MonoNet: enhancing interpretability in neural networks via monotonic features Nguyen, An-Phi Moreno, Dana Lea Le-Bel, Nicolas Rodríguez Martínez, María Bioinform Adv Original Paper MOTIVATION: Being able to interpret and explain the predictions made by a machine learning model is of fundamental importance. Unfortunately, a trade-off between accuracy and interpretability is often observed. As a result, the interest in developing more transparent yet powerful models has grown considerably over the past few years. Interpretable models are especially needed in high-stake scenarios, such as computational biology and medical informatics, where erroneous or biased models’ predictions can have deleterious consequences for a patient. Furthermore, understanding the inner workings of a model can help increase the trust in the model. RESULTS: We introduce a novel structurally constrained neural network, MonoNet, which is more transparent, while still retaining the same learning capabilities of traditional neural models. MonoNet contains monotonically connected layers that ensure monotonic relationships between (high-level) features and outputs. We show how, by leveraging the monotonic constraint in conjunction with other post hoc strategies, we can interpret our model. To demonstrate our model’s capabilities, we train MonoNet to classify cellular populations in a single-cell proteomic dataset. We also demonstrate MonoNet’s performance in other benchmark datasets in different domains, including non-biological applications (in the Supplementary Material). Our experiments show how our model can achieve good performance, while providing at the same time useful biological insights about the most important biomarkers. We finally carry out an information-theoretical analysis to show how the monotonic constraint actively contributes to the learning process of the model. AVAILABILITY AND IMPLEMENTATION: Code and sample data are available at https://github.com/phineasng/mononet. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. Oxford University Press 2023-02-23 /pmc/articles/PMC10152389/ /pubmed/37143924 http://dx.doi.org/10.1093/bioadv/vbad016 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Nguyen, An-Phi Moreno, Dana Lea Le-Bel, Nicolas Rodríguez Martínez, María MonoNet: enhancing interpretability in neural networks via monotonic features |
title | MonoNet: enhancing interpretability in neural networks via monotonic features |
title_full | MonoNet: enhancing interpretability in neural networks via monotonic features |
title_fullStr | MonoNet: enhancing interpretability in neural networks via monotonic features |
title_full_unstemmed | MonoNet: enhancing interpretability in neural networks via monotonic features |
title_short | MonoNet: enhancing interpretability in neural networks via monotonic features |
title_sort | mononet: enhancing interpretability in neural networks via monotonic features |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152389/ https://www.ncbi.nlm.nih.gov/pubmed/37143924 http://dx.doi.org/10.1093/bioadv/vbad016 |
work_keys_str_mv | AT nguyenanphi mononetenhancinginterpretabilityinneuralnetworksviamonotonicfeatures AT morenodanalea mononetenhancinginterpretabilityinneuralnetworksviamonotonicfeatures AT lebelnicolas mononetenhancinginterpretabilityinneuralnetworksviamonotonicfeatures AT rodriguezmartinezmaria mononetenhancinginterpretabilityinneuralnetworksviamonotonicfeatures |