Cargando…
Leave-one-out cross-validation, penalization, and differential bias of some prediction model performance measures—a simulation study
BACKGROUND: The performance of models for binary outcomes can be described by measures such as the concordance statistic (c-statistic, area under the curve), the discrimination slope, or the Brier score. At internal validation, data resampling techniques, e.g., cross-validation, are frequently emplo...
Autores principales: | Geroldinger, Angelika, Lusa, Lara, Nold, Mariana, Heinze, Georg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152625/ https://www.ncbi.nlm.nih.gov/pubmed/37127679 http://dx.doi.org/10.1186/s41512-023-00146-0 |
Ejemplares similares
-
An investigation of penalization and data augmentation to improve convergence of generalized estimating equations for clustered binary outcomes
por: Geroldinger, Angelika, et al.
Publicado: (2022) -
Determining optimal neighborhood size for ecological studies using leave-one-out cross validation
por: Kim, Deok Ryun, et al.
Publicado: (2012) -
Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction
por: Cheng, Hao, et al.
Publicado: (2017) -
Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression
por: Joshi, Ashwini, et al.
Publicado: (2021) -
Bring More Data!—A Good Advice? Removing Separation in Logistic Regression by Increasing Sample Size
por: Šinkovec, Hana, et al.
Publicado: (2019)