Cargando…
Faster and more accurate pathogenic combination predictions with VarCoPP2.0
BACKGROUND: The prediction of potentially pathogenic variant combinations in patients remains a key task in the field of medical genetics for the understanding and detection of oligogenic/multilocus diseases. Models tailored towards such cases can help shorten the gap of missing diagnoses and can ai...
Autores principales: | Versbraegen, Nassim, Gravel, Barbara, Nachtegael, Charlotte, Renaux, Alexandre, Verkinderen, Emma, Nowé, Ann, Lenaerts, Tom, Papadimitriou, Sofia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152795/ https://www.ncbi.nlm.nih.gov/pubmed/37127601 http://dx.doi.org/10.1186/s12859-023-05291-3 |
Ejemplares similares
-
ORVAL: a novel platform for the prediction and exploration of disease-causing oligogenic variant combinations
por: Renaux, Alexandre, et al.
Publicado: (2019) -
Predicting disease-causing variant combinations
por: Papadimitriou, Sofia, et al.
Publicado: (2019) -
Scaling up oligogenic diseases research with OLIDA: the Oligogenic Diseases Database
por: Nachtegael, Charlotte, et al.
Publicado: (2022) -
Toward reporting standards for the pathogenicity of variant combinations involved in multilocus/oligogenic diseases
por: Papadimitriou, Sofia, et al.
Publicado: (2022) -
NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing
por: Tham, Cheng Yong, et al.
Publicado: (2020)