Cargando…

Individualized Scan Protocol Based on Body Mass Index in Dual-Energy Computed Tomography Pulmonary Angiography to Reduce Radiation and Contrast Doses with Improved Image Quality

BACKGROUND: We evaluated an individualized dual-energy computed tomography (DECT) scan protocol by combining optimal monochromatic images with an appropriate ASIR-V reconstruction strength in computed tomography pulmonary angiography (CTPA) to reduce radiation and iodine doses and superior vena cava...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Xin, Tong, Xiaoyu, Liu, Yijun, Wei, Wei, Wang, Xu, Li, Beibei, Wang, Shigeng, Fan, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10152904/
https://www.ncbi.nlm.nih.gov/pubmed/37113033
http://dx.doi.org/10.12659/MSM.939234
Descripción
Sumario:BACKGROUND: We evaluated an individualized dual-energy computed tomography (DECT) scan protocol by combining optimal monochromatic images with an appropriate ASIR-V reconstruction strength in computed tomography pulmonary angiography (CTPA) to reduce radiation and iodine doses and superior vena cava (SVC) artifacts. MATERIAL/METHODS: A total of 127 patients who underwent CTPA were prospectively enrolled and randomly divided into a standard (n=63) and individualized group (n=64). The standard group used 120 kVp, 150 mAs, and 60 mL contrast media at an injection rate of 5 mL/s; the individualized group used DECT imaging mode with tube current selected according to patients’ BMI (BMI ≤20 kg/m(2), 200 mA; 20< BMI ≤23 kg/m(2), 240 mA; 23< BMI ≤25 kg/m(2), 280 mA; BMI >25 kg/m(2), 320 mA). Contrast media intake was 130 mgI/kg with an injection time of 7 s. The data in the individualized group was reconstructed to 55–70 keV (5 keV interval) monochromatic images combined with 40–80% ASIR-V (10% interval). Radiation dose, contrast dose, and image quality were compared between the groups. RESULTS: There were no significant differences in patient habitus. Compared with the standard group, the individualized group significantly decreased radiation dose by 33.93% (3.31±0.57 mSv vs 5.01±0.34 mSv) and contrast dose by 56.95% (9.04±1.40 gI vs 21.00±0.00 gI). The 60 keV image with 80%ASIR-V in the individualized group provided the best image quality and further reduced SVC beam-hardening artifacts. CONCLUSIONS: The use of BMI-dependent DECT protocol in CTPA further reduces radiation dose, contrast agent dose, and SVC artifacts, with the 60 keV images reconstructed using 80%ASiR-V having the best image quality.