Cargando…

Molecularly imprinted nanoparticles for pathogen visualisation

Saccharides displayed on the cell surface of pathogens play critical roles in many activities such as adhesion, recognition and pathogenesis, as well as in prokaryotic development. In this work, we report the synthesis of molecularly imprinted nanoparticles (nanoMIPs) against pathogen surface monosa...

Descripción completa

Detalles Bibliográficos
Autores principales: Bezdekova, Jaroslava, Canfarotta, Francesco, Grillo, Fabiana, Yesilkaya, Hasan, Vaculovicova, Marketa, Piletsky, Sergey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153071/
https://www.ncbi.nlm.nih.gov/pubmed/37143801
http://dx.doi.org/10.1039/d2na00913g
Descripción
Sumario:Saccharides displayed on the cell surface of pathogens play critical roles in many activities such as adhesion, recognition and pathogenesis, as well as in prokaryotic development. In this work, we report the synthesis of molecularly imprinted nanoparticles (nanoMIPs) against pathogen surface monosaccharides using an innovative solid-phase approach. These nanoMIPs can serve as robust and selective artificial lectins specific to one particular monosaccharide. The evaluation of their binding capabilities has been implemented against bacterial cells (E. coli and S. pneumoniae) as model pathogens. The nanoMIPs were produced against two different monosaccharides: mannose (Man), which is present mainly on the surface of Gram-negative bacteria, and N-acetylglucosamine (GlcNAc) exposed on the surface of the majority of bacteria. Herein, we assessed the potential use of nanoMIPs for pathogen cell imaging and detection via flow cytometry and confocal microscopy.