Cargando…
The covariance environment defines cellular niches for spatial inference
The tsunami of new multiplexed spatial profiling technologies has opened a range of computational challenges focused on leveraging these powerful data for biological discovery. A key challenge underlying computation is a suitable representation for features of cellular niches. Here, we develop the c...
Autores principales: | Haviv, Doron, Gatie, Mohamed, Hadjantonakis, Anna-Katerina, Nawy, Tal, Pe’er, Dana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153165/ https://www.ncbi.nlm.nih.gov/pubmed/37131616 http://dx.doi.org/10.1101/2023.04.18.537375 |
Ejemplares similares
-
scKINETICS: inference of regulatory velocity with single-cell transcriptomics data
por: Burdziak, Cassandra, et al.
Publicado: (2023) -
Inference of modules associated to eQTLs
por: Kreimer, Anat, et al.
Publicado: (2012) -
Inference of historical migration rates via haplotype sharing
por: Palamara, Pier Francesco, et al.
Publicado: (2013) -
Accurate and robust inference of microbial growth dynamics from metagenomic sequencing reveals personalized growth rates
por: Joseph, Tyler A., et al.
Publicado: (2022) -
Co-regulated Transcripts Associated to Cooperating eSNPs Define Bi-fan Motifs in Human Gene Networks
por: Kreimer, Anat, et al.
Publicado: (2014)